On the Global Geometry of Harmonic Symmetric Bilinear Differential Forms
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 328-331

Voir la notice de l'article provenant de la source Math-Net.Ru

A harmonic symmetric $p$-form $\varphi$ is defined as an element of the kernel of a self-adjoint differential operator $\square$. By using the properties of this operator, the dimension of the $\mathbb R$-modulus of harmonic symmetric $p$-forms is shown to be finite on a compact Riemannian manifold. A nonexistence theorem is proved for harmonic symmetric $2$-forms tangent to the boundary of a compact Riemannian manifold.
@article{TRSPY_2002_236_a32,
     author = {M. V. Smolnikova},
     title = {On the {Global} {Geometry} of {Harmonic} {Symmetric} {Bilinear} {Differential} {Forms}},
     journal = {Informatics and Automation},
     pages = {328--331},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a32/}
}
TY  - JOUR
AU  - M. V. Smolnikova
TI  - On the Global Geometry of Harmonic Symmetric Bilinear Differential Forms
JO  - Informatics and Automation
PY  - 2002
SP  - 328
EP  - 331
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a32/
LA  - ru
ID  - TRSPY_2002_236_a32
ER  - 
%0 Journal Article
%A M. V. Smolnikova
%T On the Global Geometry of Harmonic Symmetric Bilinear Differential Forms
%J Informatics and Automation
%D 2002
%P 328-331
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a32/
%G ru
%F TRSPY_2002_236_a32
M. V. Smolnikova. On the Global Geometry of Harmonic Symmetric Bilinear Differential Forms. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 328-331. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a32/