Three-Dimensional Domains of Parametric Resonance
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 304-317

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear oscillatory system with many degrees of freedom is considered that has periodic coefficients and depends on three independent parameters, the frequency and amplitude of periodic influence and a parameter of dissipative forces (the last two values are assumed to be small). The instability of the trivial solution (parametric resonance) is examined. General expressions for the domains of simple and combination resonances are obtained. The geometry of the resonance domain is studied, which has the shape of a cone in the three-dimensional parameter space for the most frequent types of periodic influence. As examples, the problems of the stability of elastic beams under periodic loads are considered.
@article{TRSPY_2002_236_a30,
     author = {A. P. Seyranian and A. A. Mailybaev},
     title = {Three-Dimensional {Domains} of {Parametric} {Resonance}},
     journal = {Informatics and Automation},
     pages = {304--317},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a30/}
}
TY  - JOUR
AU  - A. P. Seyranian
AU  - A. A. Mailybaev
TI  - Three-Dimensional Domains of Parametric Resonance
JO  - Informatics and Automation
PY  - 2002
SP  - 304
EP  - 317
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a30/
LA  - ru
ID  - TRSPY_2002_236_a30
ER  - 
%0 Journal Article
%A A. P. Seyranian
%A A. A. Mailybaev
%T Three-Dimensional Domains of Parametric Resonance
%J Informatics and Automation
%D 2002
%P 304-317
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a30/
%G ru
%F TRSPY_2002_236_a30
A. P. Seyranian; A. A. Mailybaev. Three-Dimensional Domains of Parametric Resonance. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 304-317. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a30/