Three-Dimensional Domains of Parametric Resonance
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 304-317.

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear oscillatory system with many degrees of freedom is considered that has periodic coefficients and depends on three independent parameters, the frequency and amplitude of periodic influence and a parameter of dissipative forces (the last two values are assumed to be small). The instability of the trivial solution (parametric resonance) is examined. General expressions for the domains of simple and combination resonances are obtained. The geometry of the resonance domain is studied, which has the shape of a cone in the three-dimensional parameter space for the most frequent types of periodic influence. As examples, the problems of the stability of elastic beams under periodic loads are considered.
@article{TRSPY_2002_236_a30,
     author = {A. P. Seyranian and A. A. Mailybaev},
     title = {Three-Dimensional {Domains} of {Parametric} {Resonance}},
     journal = {Informatics and Automation},
     pages = {304--317},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a30/}
}
TY  - JOUR
AU  - A. P. Seyranian
AU  - A. A. Mailybaev
TI  - Three-Dimensional Domains of Parametric Resonance
JO  - Informatics and Automation
PY  - 2002
SP  - 304
EP  - 317
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a30/
LA  - ru
ID  - TRSPY_2002_236_a30
ER  - 
%0 Journal Article
%A A. P. Seyranian
%A A. A. Mailybaev
%T Three-Dimensional Domains of Parametric Resonance
%J Informatics and Automation
%D 2002
%P 304-317
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a30/
%G ru
%F TRSPY_2002_236_a30
A. P. Seyranian; A. A. Mailybaev. Three-Dimensional Domains of Parametric Resonance. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 304-317. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a30/

[1] Yakubovich V. A., Starzhinskii V. M., Parametricheskii rezonans v lineinykh sistemakh, Nauka, M., 1987, 328 pp. | MR

[2] Hsu C. S., “On the parametric excitation of a dynamic system having multiple degrees of freedom”, J. Appl. Mech., 30 (1963), 367–372 | MR | Zbl

[3] V. V. Bolotin (red.), Vibratsii v tekhnike. T. 1: Kolebaniya lineinykh sistem, Mashinostroenie, M., 1978, 352 pp.

[4] Shmidt G., Parametricheskie kolebaniya, Mir, M., 1978, 336 pp. | MR

[5] Chelomei S. V., “O dinamicheskoi ustoichivosti uprugikh sistem”, DAN SSSR, 252:2 (1980), 307–310 | MR

[6] Seyranian A. P., Solem F., Pedersen P., “Stability analysis for multi-parameter linear periodic systems”, Arch. Appl. Mech., 69:3 (1999), 160–180 | DOI | Zbl

[7] Mailybaev A. A., Seiranyan A. P., “O granitsakh oblasti parametricheskogo rezonansa”, PMM, 64:6 (2000), 947–962 | MR | Zbl

[8] Seiranyan A. P., “Oblasti rezonansa dlya uravneniya Khilla s dempfirovaniem”, Dokl. RAN, 376:1 (2001), 44–47 | MR

[9] Seiranyan A. P., “Analiz chuvstvitelnosti sobstvennykh znachenii i razvitie neustoichivosti”, Strojnicky casopis, 42:3 (1991), 193–208

[10] Arnold V. I., “Zamechaniya o teorii vozmuschenii dlya zadach tipa Mate”, UMN, 38:4 (1983), 189–203 | MR

[11] Iwatsubo T., Sugiyama Y., Ogino S., “Simple and combination resonances of columns under periodic axial loads”, J. Sound Vibration, 33:2 (1974), 211–221 | DOI | Zbl

[12] Seiranyan A. P., “O stabilizatsii nekonservativnykh sistem dissipativnymi silami i neopredelennosti kriticheskoi nagruzki”, Dokl. RAN, 348:3 (1996), 323–326

[13] Bolotin V. V., “Dynamic stability of structures”, Non-linear stability of structures. Theory and computational techniques, eds. A. N. Kounadis, W. B. Kratzig, Springer, New York etc., 1995, 3–72 | Zbl