A~General Approach to the Theory of Nonexistence of Global Solutions to Nonlinear Partial Differential Equations and Inequalities
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 285-297.

Voir la notice de l'article provenant de la source Math-Net.Ru

A number of statements on the nonexistence of solutions to differential inequalities are proved with the use of the concept (introduced by the author) of nonlinear capacity induced by a differential operator. The results obtained jointly with E. Mitidieri, A. Tesei, and L. Veron are presented.
@article{TRSPY_2002_236_a28,
     author = {S. I. Pokhozhaev},
     title = {A~General {Approach} to the {Theory} of {Nonexistence} of {Global} {Solutions} to {Nonlinear} {Partial} {Differential} {Equations} and {Inequalities}},
     journal = {Informatics and Automation},
     pages = {285--297},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a28/}
}
TY  - JOUR
AU  - S. I. Pokhozhaev
TI  - A~General Approach to the Theory of Nonexistence of Global Solutions to Nonlinear Partial Differential Equations and Inequalities
JO  - Informatics and Automation
PY  - 2002
SP  - 285
EP  - 297
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a28/
LA  - ru
ID  - TRSPY_2002_236_a28
ER  - 
%0 Journal Article
%A S. I. Pokhozhaev
%T A~General Approach to the Theory of Nonexistence of Global Solutions to Nonlinear Partial Differential Equations and Inequalities
%J Informatics and Automation
%D 2002
%P 285-297
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a28/
%G ru
%F TRSPY_2002_236_a28
S. I. Pokhozhaev. A~General Approach to the Theory of Nonexistence of Global Solutions to Nonlinear Partial Differential Equations and Inequalities. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 285-297. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a28/

[1] Pokhozhaev S. I., “O sobstvennykh funktsiyakh uravneniya $\Delta u+\lambda f(u)=0$”, DAN SSSR, 165:1 (1965), 36–39 | Zbl

[2] Pokhozhaev S. I., “Suschestvenno nelineinye emkosti, indutsirovannye differentsialnymi operatorami”, Dokl. RAN, 357:5 (1997), 592–594 | MR | Zbl

[3] Gidas B., Spruck J., “Global and local behavior of positive solutions of nonlinear elliptic equations”, Commun. Pure and Appl. Math., 34 (1981), 525–598 | DOI | MR | Zbl

[4] Mitidieri E., Pokhozhaev S. I., “Otsutstvie globalnykh polozhitelnykh reshenii dlya kvazilineinykh ellipticheskikh neravenstv”, Dokl. RAN, 359:4 (1998), 456–460 | MR | Zbl

[5] Mitidieri E., Pokhozhaev S. I., “Otsutstvie polozhitelnykh reshenii dlya kvazilineinykh ellipticheskikh zadach v $\mathbb{R}^N$”, Tr. MIAN, 227, 1999, 192–222 | MR | Zbl

[6] Ni W.-M., Serrin J., “Non-existence theorems for quasilinear partial differential equations”, Rend. Circ. Mat. Palermo. Ser. 2, Suppl., 8 (1985), 171–185 | MR

[7] Ni W.-M., Serrin J., “Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case”, Atti Convegni Lincei, 77 (1986), 231–257

[8] Mitidieri E., Sweers G., van der Vorst R., “Nonexistence theorems for systems of quasilinear partial differential equations”, Diff. Integr. Equat., 8 (1995), 1331–1354 | MR | Zbl

[9] Pokhozhaev S. I., Tesei A., “O kriticheskikh pokazatelyakh otsutstviya reshenii dlya sistem kvazilineinykh parabolicheskikh neravenstv”, Dif. uravneniya, 2001 (to appear)

[10] Levine H. A., “The role of critical exponents in blowup problems”, SIAM Rev., 32 (1990), 262–288 | DOI | MR | Zbl

[11] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[12] Pohozaev S. I., Tesei A., “Blow-up of nonnegative solutions to quasilinear parabolic inequalities”, Atti Accad. Naz. Lincei. Cl. Sci. Fis. Mat. Natur. Rend. Ser. 9, 11 (2000), 99–109 | MR | Zbl

[13] Escobedo M., Herrero M. A., “Boundedness and blow up for a semilinear reaction-diffusion system”, J. Diff. Equat., 89 (1991), 176–202 | DOI | MR | Zbl

[14] Escobedo M., Levine H. A., “Critical blowup and global existence numbers for a weakly coupled system of reaction-diffusion equations”, Arch. Ration. Mech. and Anal., 129 (1995), 47–100 | DOI | MR | Zbl

[15] Levine H. A., “A Fujita type global existence–global nonexistence theorem for a weakly coupled system of reaction-diffusion equations”, Ztschr. angew. Math. und Phys., 42 (1991), 408–430 | DOI | MR | Zbl

[16] Veron L., Pohozaev S. I., “Blow-up results for nonlinear hyperbolic inequalities”, Ann. Scuola Norm. Super. Pisa. Cl. Sci. Ser. 4, 29:2 (2000), 393–420 | MR | Zbl