Arbitrary Plane Systems of Anisotropic Beams
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 234-261

Voir la notice de l'article provenant de la source Math-Net.Ru

A plane problem of anisotropic elasticity theory on an arbitrary junction of thin beams under the action of mass forces is considered. The lateral sides of the beams are free of loads, and a part of junctions are rigidly fixed. The beams and junctions (clamped, slowly moving, and movable) are classified on the basis of asymptotically exact weighted Korn's inequalities. In the presence of movable beams, a one-dimensional model of a system of beams contains algebraic equations and nonlocal transmission conditions together with conventional differential equations and local transmission conditions. On the basis of a solution to a one-dimensional problem, the leading terms of the elastic-field asymptotics are constructed and estimates for asymptotic remainders are derived.
@article{TRSPY_2002_236_a25,
     author = {S. A. Nazarov and A. S. Slutskij},
     title = {Arbitrary {Plane} {Systems} of {Anisotropic} {Beams}},
     journal = {Informatics and Automation},
     pages = {234--261},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a25/}
}
TY  - JOUR
AU  - S. A. Nazarov
AU  - A. S. Slutskij
TI  - Arbitrary Plane Systems of Anisotropic Beams
JO  - Informatics and Automation
PY  - 2002
SP  - 234
EP  - 261
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a25/
LA  - ru
ID  - TRSPY_2002_236_a25
ER  - 
%0 Journal Article
%A S. A. Nazarov
%A A. S. Slutskij
%T Arbitrary Plane Systems of Anisotropic Beams
%J Informatics and Automation
%D 2002
%P 234-261
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a25/
%G ru
%F TRSPY_2002_236_a25
S. A. Nazarov; A. S. Slutskij. Arbitrary Plane Systems of Anisotropic Beams. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 234-261. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a25/