Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2002_236_a21, author = {E. V. Kruglov and E. A. Talanova}, title = {On the {Realization} of {Morse--Smale} {Diffeomorphisms} with {Heteroclinic} {Curves} on a {3-Sphere}}, journal = {Informatics and Automation}, pages = {212--217}, publisher = {mathdoc}, volume = {236}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a21/} }
TY - JOUR AU - E. V. Kruglov AU - E. A. Talanova TI - On the Realization of Morse--Smale Diffeomorphisms with Heteroclinic Curves on a 3-Sphere JO - Informatics and Automation PY - 2002 SP - 212 EP - 217 VL - 236 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a21/ LA - ru ID - TRSPY_2002_236_a21 ER -
E. V. Kruglov; E. A. Talanova. On the Realization of Morse--Smale Diffeomorphisms with Heteroclinic Curves on a 3-Sphere. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 212-217. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a21/
[1] Artin E., Fox R., “Some wild cells and spheres in three-dimensional space”, Ann. Math., 49 (1948), 979–990 | DOI | MR | Zbl
[2] Bonatti C., Grines V., “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dyn. and Contr. Syst., 6:4 (2000), 579–602 | DOI | MR | Zbl
[3] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka. Gl. red. fiz.-mat. lit., M., 1971, 86–87 | MR | Zbl
[4] Grines V. Z., “Topologicheskaya klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym chislom geteroklinicheskikh traektorii na poverkhnostyakh”, Mat. zametki, 54:3 (1993), 3–17 | MR | Zbl
[5] Keldysh L. V., Topologicheskie vlozheniya v evklidovo prostranstvo, Tr. MIAN, 81, Nauka, M., 1966
[6] Umanskii Ya. L., “Neobkhodimye i dostatochnye usloviya topologicheskoi ekvivalentnosti trekhmernykh dinamicheskikh sistem Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh traektorii na poverkhnostyakh”, Mat. sb., 181:2 (1990), 212–239