On the Realization of Morse--Smale Diffeomorphisms with Heteroclinic Curves on a 3-Sphere
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 212-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Morse–Smale diffeomorphism is constructed on a three-dimensional sphere whose nonwandering set consists of one sink, one source, and two saddle fixed points. The two-dimensional manifolds of the saddle fixed points intersect along a unique one-dimensional heteroclinic curve. This example is constructed so that the one-dimensional separatrices of the saddle fixed points may represent wildly embedded arcs, which results in the realization of at least two topologically nonconjugate diffeomorphisms of the type under consideration. The example constructed shows an essential difference between the behavior of discrete dynamical systems on three-dimensional manifolds and analogous systems with continuous time (flows).
@article{TRSPY_2002_236_a21,
     author = {E. V. Kruglov and E. A. Talanova},
     title = {On the {Realization} of {Morse--Smale} {Diffeomorphisms} with {Heteroclinic} {Curves} on a {3-Sphere}},
     journal = {Informatics and Automation},
     pages = {212--217},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a21/}
}
TY  - JOUR
AU  - E. V. Kruglov
AU  - E. A. Talanova
TI  - On the Realization of Morse--Smale Diffeomorphisms with Heteroclinic Curves on a 3-Sphere
JO  - Informatics and Automation
PY  - 2002
SP  - 212
EP  - 217
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a21/
LA  - ru
ID  - TRSPY_2002_236_a21
ER  - 
%0 Journal Article
%A E. V. Kruglov
%A E. A. Talanova
%T On the Realization of Morse--Smale Diffeomorphisms with Heteroclinic Curves on a 3-Sphere
%J Informatics and Automation
%D 2002
%P 212-217
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a21/
%G ru
%F TRSPY_2002_236_a21
E. V. Kruglov; E. A. Talanova. On the Realization of Morse--Smale Diffeomorphisms with Heteroclinic Curves on a 3-Sphere. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 212-217. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a21/

[1] Artin E., Fox R., “Some wild cells and spheres in three-dimensional space”, Ann. Math., 49 (1948), 979–990 | DOI | MR | Zbl

[2] Bonatti C., Grines V., “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dyn. and Contr. Syst., 6:4 (2000), 579–602 | DOI | MR | Zbl

[3] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka. Gl. red. fiz.-mat. lit., M., 1971, 86–87 | MR | Zbl

[4] Grines V. Z., “Topologicheskaya klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym chislom geteroklinicheskikh traektorii na poverkhnostyakh”, Mat. zametki, 54:3 (1993), 3–17 | MR | Zbl

[5] Keldysh L. V., Topologicheskie vlozheniya v evklidovo prostranstvo, Tr. MIAN, 81, Nauka, M., 1966

[6] Umanskii Ya. L., “Neobkhodimye i dostatochnye usloviya topologicheskoi ekvivalentnosti trekhmernykh dinamicheskikh sistem Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh traektorii na poverkhnostyakh”, Mat. sb., 181:2 (1990), 212–239