Continuity at a~Point for Solutions to Elliptic Equations with a~Nonstandard Growth Condition
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 204-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

A question concerning the Hölder property of solutions to elliptic equations with a nonstandard growth condition is considered. The internal smoothness of solutions to an equation is proved at a fixed point under the condition that a variable exponent at this point has a logarithmic modulus of continuity. The proof is based on a modification of the Moser iteration technique.
@article{TRSPY_2002_236_a20,
     author = {O. V. Krasheninnikova},
     title = {Continuity at {a~Point} for {Solutions} to {Elliptic} {Equations} with {a~Nonstandard} {Growth} {Condition}},
     journal = {Informatics and Automation},
     pages = {204--211},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a20/}
}
TY  - JOUR
AU  - O. V. Krasheninnikova
TI  - Continuity at a~Point for Solutions to Elliptic Equations with a~Nonstandard Growth Condition
JO  - Informatics and Automation
PY  - 2002
SP  - 204
EP  - 211
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a20/
LA  - ru
ID  - TRSPY_2002_236_a20
ER  - 
%0 Journal Article
%A O. V. Krasheninnikova
%T Continuity at a~Point for Solutions to Elliptic Equations with a~Nonstandard Growth Condition
%J Informatics and Automation
%D 2002
%P 204-211
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a20/
%G ru
%F TRSPY_2002_236_a20
O. V. Krasheninnikova. Continuity at a~Point for Solutions to Elliptic Equations with a~Nonstandard Growth Condition. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 204-211. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a20/

[1] De Giorgi E., “Sulla differenziabilità e l'analiticà delle estremali degli integrali multipli regolari”, Mem. Accad. Sci. Torino. Cl. Fis. Mat. Natur., 3, no. 3, 1957, 25–43 | MR | Zbl

[2] Nash J., “Continuity of solutions of parabolic and elliptic equations”, Amer. J. Math., 80 (1958), 931–954 | DOI | MR | Zbl

[3] Moser J., “On Harnack's theorem for elliptic differential equations”, Commun. Pure and Appl. Math., 14 (1961), 577–591 | DOI | MR | Zbl

[4] Ladyzhenskaya O. A., Uraltseva N. N., “O nepreryvnosti po Gelderu reshenii i ikh proizvodnykh dlya lineinykh i kvazilineinykh uravnenii ellipticheskogo i parabolicheskogo tipov”, Tr. MIAN, 73, 1964, 172–220 | Zbl

[5] Serrin J., “Local behavior of quasilinear elliptic equations”, Acta Math., 111 (1964), 247–302 | DOI | MR | Zbl

[6] Zhikov V. V., “On some variational problems”, Russ. J. Math. Phys., 5:1 (1996), 105–116 | MR

[7] Zhikov V. V., “Meyers type estimates for the solution of a nonlinear Stokes system”, Diff. Equat., 33:1 (1997), 108–115 | MR | Zbl

[8] Zhikov V. V., “On Lavrentiev phenomenon”, Russ. J. Math. Phys., 3:2 (1995), 249–269 | MR | Zbl

[9] Fan Xianling, A class of de Giorgi type and Hölder continuity of minimizers of variational with $m(x)$-growth condition, Preprint, Lanzhou Univ. (China), 1995

[10] Alkhutov Yu. A., “Neravenstvo Kharnaka i gelderovost reshenii nelineinykh ellipticheskikh uravnenii s nestandartnym usloviem rosta”, Dif. uravneniya, 33:12 (1997), 1651–1660 | MR | Zbl