Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2002_236_a17, author = {L. S. Efremova}, title = {$\Omega${-Stable} {Skew} {Products} of {Interval} {Maps} {Are} {Not} {Dense} in $T^1(I)$}, journal = {Informatics and Automation}, pages = {167--173}, publisher = {mathdoc}, volume = {236}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a17/} }
L. S. Efremova. $\Omega$-Stable Skew Products of Interval Maps Are Not Dense in $T^1(I)$. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 167-173. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a17/
[1] Abraham R., Smale S., “Nongenericity of $\Omega$-stability”, Global analysis (Berkeley, Calif., 1968), Proc. Symp. Pure Math., XIV, Amer. Math. Soc., Providence, R.I., 1970, 5–8 | MR
[2] Newhouse S. E., “Nondensity of Axiom A on $S^2$”, Global analysis (Berkeley, Calif., 1968), Proc. Symp. Pure Math., XIV, Amer. Math. Soc., Providence, R.I., 1970, 191–202 | MR
[3] Przytycki F., “On $\Omega$-stability and structural stability of endomorphisms satisfying Axiom A”, Stud. Math., 60 (1977), 61–77 | MR | Zbl
[4] Ikeda H., “$\Omega$-inverse limit stability theorem”, Trans. Amer. Math. Soc., 348:6 (1996), 2183–2200 | DOI | MR | Zbl
[5] Yakobson M. V., “O gladkikh otobrazheniyakh okruzhnosti v sebya”, Mat. sb., 85:2 (1971), 163–188 | Zbl
[6] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966 | MR
[7] Efremova L. S., “O ponyatii $\Omega$-funktsii kosogo proizvedeniya otobrazhenii intervala”, Dinamicheskie sistemy, Tr. Mezhdunar. konf., posv. 90-letiyu so dnya rozhdeniya L. S. Pontryagina., Itogi nauki i tekhniki. Sovr. matematika i ee prilozh.: Tematich. obzory, 6, VINITI, M., 1999, 129–160 | MR
[8] Efremova L. S., “New set-valued functions in the theory of skew products of interval maps”, Nonlin. Anal. Th. Meth. and Appl., 47 (2001), 5297–5308 | DOI | MR | Zbl
[9] Kuratovskii K., Topologiya, T. 2, Mir, M., 1969 | MR
[10] Efremova L. S., Periodicheskie dvizheniya diskretnykh poludinamicheskikh sistem, Dis. $\dots$ kand. fiz.-mat. nauk, Gorkii, 1981
[11] Coven E. M., Nitecki Z., “Nonwandering sets of the powers of maps of the interval”, Ergod. Th. and Dyn. Syst., 1 (1981), 9–31 | MR | Zbl
[12] Vereikina M. B., Sharkovskii A. N., “Vozvraschaemost v odnomernykh dinamicheskikh sistemakh”, Priblizhennye i kachestvennye issledovaniya differentsialnykh i differentsialno-funktsionalnykh uravnenii, In-t matematiki AN Ukrainy, Kiev, 1983, 35–46 | MR
[13] Block L., “Stability of periodic orbits in the theorem of Šarkovskii”, Proc. Amer. Math. Soc., 81 (1981), 333–336 | DOI | MR | Zbl