On Eigenvibrations of a~Body with Many Concentrated Masses Located Nonperiodically along the Boundary
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 158-166.

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary value problem is considered for a system of linear elasticity theory with nonperiodic rapidly varying boundary conditions and a large number of concentrated masses near the boundary. The asymptotic behavior of the solutions to this problem as well as the limit behavior of its spectrum are analyzed. It is assumed that the number of concentrated masses has a logarithmic growth with respect to a small parameter that characterizes the diameter of the concentrated masses. The case when the limit problem has the Fourier boundary condition and the density of inclusions is not very high is considered.
@article{TRSPY_2002_236_a16,
     author = {E. I. Doronina and G. A. Chechkin},
     title = {On {Eigenvibrations} of {a~Body} with {Many} {Concentrated} {Masses} {Located} {Nonperiodically} along the {Boundary}},
     journal = {Informatics and Automation},
     pages = {158--166},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a16/}
}
TY  - JOUR
AU  - E. I. Doronina
AU  - G. A. Chechkin
TI  - On Eigenvibrations of a~Body with Many Concentrated Masses Located Nonperiodically along the Boundary
JO  - Informatics and Automation
PY  - 2002
SP  - 158
EP  - 166
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a16/
LA  - ru
ID  - TRSPY_2002_236_a16
ER  - 
%0 Journal Article
%A E. I. Doronina
%A G. A. Chechkin
%T On Eigenvibrations of a~Body with Many Concentrated Masses Located Nonperiodically along the Boundary
%J Informatics and Automation
%D 2002
%P 158-166
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a16/
%G ru
%F TRSPY_2002_236_a16
E. I. Doronina; G. A. Chechkin. On Eigenvibrations of a~Body with Many Concentrated Masses Located Nonperiodically along the Boundary. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 158-166. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a16/

[1] Chechkin G. A., “O kolebaniyakh tel s kontsentrirovannymi massami, raspolozhennymi na granitse”, UMN, 50:4 (1995), 105–106 | MR

[2] Gómez D., Lobo M., Pérez E., “On the eigenfunctions associated with the high frequencies in systems with a concentrated mass”, J. Math. Pure and Appl. Ser. 9, 78:8 (1999), 841–865 | DOI | MR | Zbl

[3] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[4] Lobo M., Pérez E., “On vibrations of a body with many concentrated masses near the boundary”, Math. Mod. and Meth. Appl. Sci., 3:2 (1993), 249–273 | DOI | MR | Zbl

[5] Lobo M., Pérez E., “Vibrations of a membrane with many concentrated masses near the boundary”, Math. Mod. and Meth. Appl. Sci., 5:5 (1995), 565–585 | DOI | MR | Zbl

[6] Lobo M., Pérez E., “High frequency vibrations in a stiff problem”, Math. Mod. and Meth. Appl. Sci., 7:2 (1997), 291–311 | DOI | MR | Zbl

[7] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, MGU, M., 1990

[8] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR