On Nonisolated Singular Points of Solutions to Linear Elliptic Equations with Constant Coefficients
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 153-157

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary homogeneous elliptic linear differential operator $P$ with constant coefficients, results on the removal of singularities of the solutions to the equation $Pf=0$ in various classes of functions (such as the Hölder–Zygmund classes, Nikol'skii–Besov classes, and function classes defined with the use of local mean approximations by the solutions to the equation under consideration) are presented. The results are stated in terms of Hausdorff measures, Minkowski girths, and special capacities and generalized Hausdorff-type girths introduced in the paper and associated with the Nikol'skii–Besov classes.
@article{TRSPY_2002_236_a15,
     author = {E. P. Dolzhenko and A. V. Pokrovskii},
     title = {On {Nonisolated} {Singular} {Points} of {Solutions} to {Linear} {Elliptic} {Equations} with {Constant} {Coefficients}},
     journal = {Informatics and Automation},
     pages = {153--157},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a15/}
}
TY  - JOUR
AU  - E. P. Dolzhenko
AU  - A. V. Pokrovskii
TI  - On Nonisolated Singular Points of Solutions to Linear Elliptic Equations with Constant Coefficients
JO  - Informatics and Automation
PY  - 2002
SP  - 153
EP  - 157
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a15/
LA  - ru
ID  - TRSPY_2002_236_a15
ER  - 
%0 Journal Article
%A E. P. Dolzhenko
%A A. V. Pokrovskii
%T On Nonisolated Singular Points of Solutions to Linear Elliptic Equations with Constant Coefficients
%J Informatics and Automation
%D 2002
%P 153-157
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a15/
%G ru
%F TRSPY_2002_236_a15
E. P. Dolzhenko; A. V. Pokrovskii. On Nonisolated Singular Points of Solutions to Linear Elliptic Equations with Constant Coefficients. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 153-157. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a15/