Singularities of Limiting Directions of Generic Higher Order Implicit ODEs
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 134-141

Voir la notice de l'article provenant de la source Math-Net.Ru

An implicit differential equation of order $n$ is defined as a zero level of a smooth function on the $(n+2)$-dimensional space with a two-dimensional distribution which is the result of natural Goursat prolongation procedure from a standard contact structure in the space of directions on the plane. The solution of this equation is an immersed curve which lies in this level and is tangent to this distribution. Generic metamorphoses of cones of possible directions on the plane of all solutions are classified. This classification is closely related to the classification of generic singularities of first-order implicit differential equations on the plane and to the classification of generic singularities of limiting direction fields of dynamic inequalities on surfaces.
@article{TRSPY_2002_236_a13,
     author = {A. A. Davydov},
     title = {Singularities of {Limiting} {Directions} of {Generic} {Higher} {Order} {Implicit} {ODEs}},
     journal = {Informatics and Automation},
     pages = {134--141},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a13/}
}
TY  - JOUR
AU  - A. A. Davydov
TI  - Singularities of Limiting Directions of Generic Higher Order Implicit ODEs
JO  - Informatics and Automation
PY  - 2002
SP  - 134
EP  - 141
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a13/
LA  - ru
ID  - TRSPY_2002_236_a13
ER  - 
%0 Journal Article
%A A. A. Davydov
%T Singularities of Limiting Directions of Generic Higher Order Implicit ODEs
%J Informatics and Automation
%D 2002
%P 134-141
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a13/
%G ru
%F TRSPY_2002_236_a13
A. A. Davydov. Singularities of Limiting Directions of Generic Higher Order Implicit ODEs. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 134-141. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a13/