Locally Bounded Generalized Entropy Solutions to the Cauchy Problem for a~First-Order Quasilinear Equation
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 120-133

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalized entropy solutions for a first-order quasilinear partial differential equation are studied. It is shown that the Cauchy problem for this equation is ill-posed in the class of locally bounded functions. The examples of nonexistence and nonuniqueness of solutions are constructed. Moreover, a uniqueness theorem, which holds for solutions integrable with respect to the spatial variable, is proved.
@article{TRSPY_2002_236_a12,
     author = {A. Yu. Goritskii and E. Yu. Panov},
     title = {Locally {Bounded} {Generalized} {Entropy} {Solutions} to the {Cauchy} {Problem} for {a~First-Order} {Quasilinear} {Equation}},
     journal = {Informatics and Automation},
     pages = {120--133},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a12/}
}
TY  - JOUR
AU  - A. Yu. Goritskii
AU  - E. Yu. Panov
TI  - Locally Bounded Generalized Entropy Solutions to the Cauchy Problem for a~First-Order Quasilinear Equation
JO  - Informatics and Automation
PY  - 2002
SP  - 120
EP  - 133
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a12/
LA  - ru
ID  - TRSPY_2002_236_a12
ER  - 
%0 Journal Article
%A A. Yu. Goritskii
%A E. Yu. Panov
%T Locally Bounded Generalized Entropy Solutions to the Cauchy Problem for a~First-Order Quasilinear Equation
%J Informatics and Automation
%D 2002
%P 120-133
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a12/
%G ru
%F TRSPY_2002_236_a12
A. Yu. Goritskii; E. Yu. Panov. Locally Bounded Generalized Entropy Solutions to the Cauchy Problem for a~First-Order Quasilinear Equation. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 120-133. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a12/