Homoclinic Tangencies, $\Omega$-Moduli, and Bifurcations
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 103-119

Voir la notice de l'article provenant de la source Math-Net.Ru

A survey of author's results related to the problems of existence of continuous invariants (moduli) of $\Omega$-conjugacy of multidimensional diffeomorphisms with homoclinic tangencies is presented. The problem of bifurcations of periodic orbits is considered in the case of four-dimensional diffeomorphisms with a nontransversal homoclinic orbit to a fixed point of saddle–focus type.
@article{TRSPY_2002_236_a11,
     author = {V. S. Gonchenko},
     title = {Homoclinic {Tangencies,} $\Omega${-Moduli,} and {Bifurcations}},
     journal = {Informatics and Automation},
     pages = {103--119},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a11/}
}
TY  - JOUR
AU  - V. S. Gonchenko
TI  - Homoclinic Tangencies, $\Omega$-Moduli, and Bifurcations
JO  - Informatics and Automation
PY  - 2002
SP  - 103
EP  - 119
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a11/
LA  - ru
ID  - TRSPY_2002_236_a11
ER  - 
%0 Journal Article
%A V. S. Gonchenko
%T Homoclinic Tangencies, $\Omega$-Moduli, and Bifurcations
%J Informatics and Automation
%D 2002
%P 103-119
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a11/
%G ru
%F TRSPY_2002_236_a11
V. S. Gonchenko. Homoclinic Tangencies, $\Omega$-Moduli, and Bifurcations. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 103-119. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a11/