Existence of Global Weak Solutions to the Equations of One-Dimensional Nonlinear Thermoviscoelasticity with Discontinuous Data
Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 11-19

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of global weak solutions to initial–boundary value problems for a system of quasilinear differential equations describing the dynamics of a one-dimensional Voigt-type thermoviscoelastic body is established. The initial and boundary data may be discontinuous functions. Only physically natural requirements are imposed on the data. In particular, it is required that the initial velocity and initial temperature should be such that the full energy is finite. The density of heat sources and a boundary heat flux may be functions from $L_1$. The functions defining the properties of the body may also be discontinuous in $x$.
@article{TRSPY_2002_236_a1,
     author = {A. A. Amosov},
     title = {Existence of {Global} {Weak} {Solutions} to the {Equations} of {One-Dimensional} {Nonlinear} {Thermoviscoelasticity} with {Discontinuous} {Data}},
     journal = {Informatics and Automation},
     pages = {11--19},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a1/}
}
TY  - JOUR
AU  - A. A. Amosov
TI  - Existence of Global Weak Solutions to the Equations of One-Dimensional Nonlinear Thermoviscoelasticity with Discontinuous Data
JO  - Informatics and Automation
PY  - 2002
SP  - 11
EP  - 19
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a1/
LA  - ru
ID  - TRSPY_2002_236_a1
ER  - 
%0 Journal Article
%A A. A. Amosov
%T Existence of Global Weak Solutions to the Equations of One-Dimensional Nonlinear Thermoviscoelasticity with Discontinuous Data
%J Informatics and Automation
%D 2002
%P 11-19
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a1/
%G ru
%F TRSPY_2002_236_a1
A. A. Amosov. Existence of Global Weak Solutions to the Equations of One-Dimensional Nonlinear Thermoviscoelasticity with Discontinuous Data. Informatics and Automation, Differential equations and dynamical systems, Tome 236 (2002), pp. 11-19. http://geodesic.mathdoc.fr/item/TRSPY_2002_236_a1/