Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2001_235_a9, author = {P. Mattila and P. V. Paramonov}, title = {On {Density} {Properties} of the {Riesz} {Capacities} and the {Analytic} {Capacity~}$\gamma _+$}, journal = {Informatics and Automation}, pages = {143--156}, publisher = {mathdoc}, volume = {235}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a9/} }
TY - JOUR AU - P. Mattila AU - P. V. Paramonov TI - On Density Properties of the Riesz Capacities and the Analytic Capacity~$\gamma _+$ JO - Informatics and Automation PY - 2001 SP - 143 EP - 156 VL - 235 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a9/ LA - en ID - TRSPY_2001_235_a9 ER -
P. Mattila; P. V. Paramonov. On Density Properties of the Riesz Capacities and the Analytic Capacity~$\gamma _+$. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 143-156. http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a9/
[1] Carleson L., Selected problems on exceptional sets, Van Nostrand, Princeton, 1966 | MR
[2] Eiderman V. Ya., “Otsenki dlya potentsialov i $\delta$-subgarmonicheskikh funktsii vne isklyuchitelnykh mnozhestv”, Izv. RAN. Ser. mat., 61:6 (1997), 1293–1329 | MR | Zbl
[3] Federer H., Geometric measure theory, Springer-Verl., Berlin, 1969 | MR
[4] Garnett J., Analytic capacity and measure, Lect. Notes Math., 297, Springer-Verl., Berlin, 1972 | MR | Zbl
[5] Mattila P., “An example illustrating integralgeometric measures”, Amer. J. Math., 108 (1986), 693–702 | DOI | MR | Zbl
[6] Mattila P., “On the analytic capacity and curvature of some Cantor sets with non-$\sigma$-finite length”, Publ. Mat., 40 (1996), 195–204 | MR | Zbl
[7] Mattila P., Paramonov P. V., “On geometric properties of harmonic $\mathrm{Lip}_1$-capacity”, Pacif. J. Math., 171:2 (1995), 469–490 | MR
[8] Verdera Dzh., Melnikov M. S., Paramonov P. V., “$C^1$-approksimatsiya i prodolzhenie subgarmonicheskikh funktsii”, Mat. sb., 192:4 (2001), 37–58 | MR | Zbl
[9] Tolsa X., “$L^2$-boundedness of the Cauchy integral operator for continuous measures”, Duke Math. J., 98:2 (1999), 269–304 | DOI | MR | Zbl
[10] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR