Homogeneous Real Hypersurfaces in $\mathbb C^3$ with Two-Dimensional Isotropy Groups
Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 114-142

Voir la notice de l'article provenant de la source Math-Net.Ru

A local classification is constructed for real nonumbilic hypersurfaces of three-dimensional complex spaces that have sign-indefinite nondegenerate Levi forms and admit seven-dimensional transitive groups of local holomorphic transformations. A full (up to holomorphic equivalence) explicit description of such manifolds is presented. The basic tool used in this paper is the apparatus of local normal forms for the equations of the manifolds considered.
@article{TRSPY_2001_235_a8,
     author = {A. V. Loboda},
     title = {Homogeneous {Real} {Hypersurfaces} in $\mathbb C^3$ with {Two-Dimensional} {Isotropy} {Groups}},
     journal = {Informatics and Automation},
     pages = {114--142},
     publisher = {mathdoc},
     volume = {235},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a8/}
}
TY  - JOUR
AU  - A. V. Loboda
TI  - Homogeneous Real Hypersurfaces in $\mathbb C^3$ with Two-Dimensional Isotropy Groups
JO  - Informatics and Automation
PY  - 2001
SP  - 114
EP  - 142
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a8/
LA  - ru
ID  - TRSPY_2001_235_a8
ER  - 
%0 Journal Article
%A A. V. Loboda
%T Homogeneous Real Hypersurfaces in $\mathbb C^3$ with Two-Dimensional Isotropy Groups
%J Informatics and Automation
%D 2001
%P 114-142
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a8/
%G ru
%F TRSPY_2001_235_a8
A. V. Loboda. Homogeneous Real Hypersurfaces in $\mathbb C^3$ with Two-Dimensional Isotropy Groups. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 114-142. http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a8/