Characterization of $\mathbb C^n$ by Its Automorphism Group
Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 110-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if the group of holomorphic automorphisms of a connected Stein manifold $M$ is isomorphic to that of $\mathbb C^n$ as a topological group equipped with the compact-open topology, then $M$ is biholomorphically equivalent to $\mathbb C^n$.
@article{TRSPY_2001_235_a7,
     author = {A. V. Isaev},
     title = {Characterization of $\mathbb C^n$ by {Its} {Automorphism} {Group}},
     journal = {Informatics and Automation},
     pages = {110--113},
     publisher = {mathdoc},
     volume = {235},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a7/}
}
TY  - JOUR
AU  - A. V. Isaev
TI  - Characterization of $\mathbb C^n$ by Its Automorphism Group
JO  - Informatics and Automation
PY  - 2001
SP  - 110
EP  - 113
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a7/
LA  - en
ID  - TRSPY_2001_235_a7
ER  - 
%0 Journal Article
%A A. V. Isaev
%T Characterization of $\mathbb C^n$ by Its Automorphism Group
%J Informatics and Automation
%D 2001
%P 110-113
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a7/
%G en
%F TRSPY_2001_235_a7
A. V. Isaev. Characterization of $\mathbb C^n$ by Its Automorphism Group. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 110-113. http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a7/

[1] Andersen E., Lempert L., “On the group of holomorphic automorphisms of $\mathbb{C}^n$”, Invent. Math., 110 (1992), 371–388 | DOI | MR | Zbl

[2] Barrett D., Bedford E., Dadok J., “$\mathbb{T}^n$-actions on holomorphically separable complex manifolds”, Math. Ztschr., 202 (1989), 65–82 | DOI | MR | Zbl

[3] Bochner S., Montgomery D., “Groups of differentiable and real or complex analytic transformations”, Ann. Math., 46 (1945), 685–694 | DOI | MR | Zbl

[4] Isaev A. V., Kruzhilin N. G., Effective actions of the unitary group on complex manifolds, Preprint CMA, ANU No. MRR 00-024, Canberra, 2000 | MR

[5] Warner F. W., Foundations of differentiable manifolds and Lie groups, Scott, Foresman Co., Glenview, Ill., London, 1971 | MR | Zbl