Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2001_235_a7, author = {A. V. Isaev}, title = {Characterization of $\mathbb C^n$ by {Its} {Automorphism} {Group}}, journal = {Informatics and Automation}, pages = {110--113}, publisher = {mathdoc}, volume = {235}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a7/} }
A. V. Isaev. Characterization of $\mathbb C^n$ by Its Automorphism Group. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 110-113. http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a7/
[1] Andersen E., Lempert L., “On the group of holomorphic automorphisms of $\mathbb{C}^n$”, Invent. Math., 110 (1992), 371–388 | DOI | MR | Zbl
[2] Barrett D., Bedford E., Dadok J., “$\mathbb{T}^n$-actions on holomorphically separable complex manifolds”, Math. Ztschr., 202 (1989), 65–82 | DOI | MR | Zbl
[3] Bochner S., Montgomery D., “Groups of differentiable and real or complex analytic transformations”, Ann. Math., 46 (1945), 685–694 | DOI | MR | Zbl
[4] Isaev A. V., Kruzhilin N. G., Effective actions of the unitary group on complex manifolds, Preprint CMA, ANU No. MRR 00-024, Canberra, 2000 | MR
[5] Warner F. W., Foundations of differentiable manifolds and Lie groups, Scott, Foresman Co., Glenview, Ill., London, 1971 | MR | Zbl