Three Remarks on the Inversion Problem for Polynomial Maps
Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 94-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

An example of covering a sphere by a projective plane arisen in relation to the so-called Jacobian problem is described. In the same relation, conformal types of complex curves are touched upon. The preservation of the type by multidimensional holomorphic maps is pointed out.
@article{TRSPY_2001_235_a5,
     author = {V. A. Zorich},
     title = {Three {Remarks} on the {Inversion} {Problem} for {Polynomial} {Maps}},
     journal = {Informatics and Automation},
     pages = {94--97},
     publisher = {mathdoc},
     volume = {235},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a5/}
}
TY  - JOUR
AU  - V. A. Zorich
TI  - Three Remarks on the Inversion Problem for Polynomial Maps
JO  - Informatics and Automation
PY  - 2001
SP  - 94
EP  - 97
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a5/
LA  - ru
ID  - TRSPY_2001_235_a5
ER  - 
%0 Journal Article
%A V. A. Zorich
%T Three Remarks on the Inversion Problem for Polynomial Maps
%J Informatics and Automation
%D 2001
%P 94-97
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a5/
%G ru
%F TRSPY_2001_235_a5
V. A. Zorich. Three Remarks on the Inversion Problem for Polynomial Maps. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 94-97. http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a5/

[1] Dell'Achchio F., “Kontrprimer k odnoi gipoteze, svyazannoi s problemoi o yakobiane”, Mat. zametki, 58:3 (1995), 452–455 | MR

[2] Dell'Achchio F., “O nepreryvnom prodolzhenii lokalno gomeomorfnykh simplitsialnykh otobrazhenii $\mathbb{R}^2$ v sebya posredstvom $\sigma$-protsessov”, Mat. zametki, 59:6 (1996), 821–831 | MR

[3] Zorich V. A., “Teorema M. A. Lavrenteva o kvazikonformnykh otobrazheniyakh prostranstva”, Mat. sb., 74 (1967), 417–433 | Zbl

[4] Lavrentev M. A., “Ob odnom differentsialnom priznake gomeomorfnykh otobrazhenii trekhmernykh oblastei”, DAN SSSR, 20 (1938), 241–242

[5] Pinchuk S., “A counterexample to the strong real Jacobian conjecture”, Math. Ztschr., 217:1 (1994), 1–4 | DOI | MR | Zbl

[6] Arnold V. I., Vasilev V. A., Goryunov V. V., Lyashko O. V., “Osobennosti. I: Lokalnaya i globalnaya teoriya”, Dinamicheskie sistemy – 6, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, VINITI, M., 1988, 5–250 | MR

[7] Shafarevich I. R., Osnovy algebraicheskoi geometrii, T. 1, Nauka, M., 1988 | MR

[8] Zorich V. A., “The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems”, Lect. Notes Math., 1508, 1992, 131–148 | MR

[9] Varopoulos N. Th., Saloff-Coste L., Coulhon T., Analysis and geometry on groups, Cambridge Tracts Math., 100, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[10] Zorich V. A., “Asymptotic geometry and conformal types of Carnot–Carathéodory spaces”, Geom. and Funct. Anal., 9:2 (1999), 393–411 | DOI | MR | Zbl

[11] Gromov M., “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–323 | MR | Zbl

[12] Gromov M., Metric structures for Riemannian and non-Riemannian spaces, Appendices by M. Katz, P. Pansu, S. Semmes, Birkhäuser, Boston etc., 1999 | MR | Zbl

[13] Zorich V. A., “Kvazikonformnye pogruzheniya rimanovykh mnogoobrazii i teorema pikarovskogo tipa”, Funkts. analiz i ego pril., 34:3 (2000), 37–48 | MR | Zbl