Can a~Good Manifold Come to a~Bad End?
Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 71-93

Voir la notice de l'article provenant de la source Math-Net.Ru

Two notions of cobordism are defined for compact CR-manifolds. The weaker notion, complex cobordism realizes two CR-manifolds as the boundary of a complex manifold; in the stronger notion, strict complex cobordism there is a strictly plurisubharmonic function defined on the total space of the cobordism with the boundary components as level sets of this function. We show that the embeddability for a 3-dimensional, strictly pseudoconvex CR-manifold is a strict cobordism invariant. De Oliveira has recently shown that this is false for complex cobordisms. His construction is described in the appendix.
@article{TRSPY_2001_235_a4,
     author = {C. L. Epstein and G. M. Henkin},
     title = {Can {a~Good} {Manifold} {Come} to {a~Bad} {End?}},
     journal = {Informatics and Automation},
     pages = {71--93},
     publisher = {mathdoc},
     volume = {235},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a4/}
}
TY  - JOUR
AU  - C. L. Epstein
AU  - G. M. Henkin
TI  - Can a~Good Manifold Come to a~Bad End?
JO  - Informatics and Automation
PY  - 2001
SP  - 71
EP  - 93
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a4/
LA  - en
ID  - TRSPY_2001_235_a4
ER  - 
%0 Journal Article
%A C. L. Epstein
%A G. M. Henkin
%T Can a~Good Manifold Come to a~Bad End?
%J Informatics and Automation
%D 2001
%P 71-93
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a4/
%G en
%F TRSPY_2001_235_a4
C. L. Epstein; G. M. Henkin. Can a~Good Manifold Come to a~Bad End?. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 71-93. http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a4/