Counterexamples to the ``Jacobian Conjecture at Infinity''
Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 181-210

Voir la notice de l'article provenant de la source Math-Net.Ru

Earlier, the author constructed an example of an open complex surface $U$, a smooth compact rational curve $L\subset U$ with the self-intersection index $+1$, and a holomorphic immersion $f:U\setminus L\to\mathbb C^2$ that is meromorphic on $U$ but is not an embedding (if $U\subset \mathbb C\mathrm P^2$, then such an immersion can be extended to a counterexample to the Jacobian conjecture). In this paper, an analogous example is constructed with the property that $f|_{\partial U}$ is an immersion of a 3-sphere in $\mathbb C^2$ which is regularly homotopic to an embedding. The map $f$ cannot be extended to a counterexample to the Jacobian conjecture, which is proved by the analysis of the coefficients of polynomials.
@article{TRSPY_2001_235_a13,
     author = {S. Yu. Orevkov},
     title = {Counterexamples to the {``Jacobian} {Conjecture} at {Infinity''}},
     journal = {Informatics and Automation},
     pages = {181--210},
     publisher = {mathdoc},
     volume = {235},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a13/}
}
TY  - JOUR
AU  - S. Yu. Orevkov
TI  - Counterexamples to the ``Jacobian Conjecture at Infinity''
JO  - Informatics and Automation
PY  - 2001
SP  - 181
EP  - 210
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a13/
LA  - ru
ID  - TRSPY_2001_235_a13
ER  - 
%0 Journal Article
%A S. Yu. Orevkov
%T Counterexamples to the ``Jacobian Conjecture at Infinity''
%J Informatics and Automation
%D 2001
%P 181-210
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a13/
%G ru
%F TRSPY_2001_235_a13
S. Yu. Orevkov. Counterexamples to the ``Jacobian Conjecture at Infinity''. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 181-210. http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a13/