Complex Analysis and the Cauchy Problem for Convolution Operators
Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 165-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space of entire functions, a homogeneous convolution equation is considered, and conditions for the existence of solutions to this equation with given values at integer points are found.
@article{TRSPY_2001_235_a11,
     author = {V. V. Napalkov},
     title = {Complex {Analysis} and the {Cauchy} {Problem} for {Convolution} {Operators}},
     journal = {Informatics and Automation},
     pages = {165--168},
     publisher = {mathdoc},
     volume = {235},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a11/}
}
TY  - JOUR
AU  - V. V. Napalkov
TI  - Complex Analysis and the Cauchy Problem for Convolution Operators
JO  - Informatics and Automation
PY  - 2001
SP  - 165
EP  - 168
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a11/
LA  - ru
ID  - TRSPY_2001_235_a11
ER  - 
%0 Journal Article
%A V. V. Napalkov
%T Complex Analysis and the Cauchy Problem for Convolution Operators
%J Informatics and Automation
%D 2001
%P 165-168
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a11/
%G ru
%F TRSPY_2001_235_a11
V. V. Napalkov. Complex Analysis and the Cauchy Problem for Convolution Operators. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 165-168. http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a11/

[1] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR

[2] Napalkov V. V., “O diskretnykh slabodostatochnykh mnozhestvakh v nekotorykh prostranstvakh tselykh funktsii”, Izv. AN SSSR. Ser. mat., 45:5 (1981), 1088–1099 | MR | Zbl

[3] Napalkov V. V., “O strogoi topologii v nekotorykh vesovykh prostranstvakh funktsii”, Mat. zametki, 39:4 (1986), 529–538 | MR | Zbl

[4] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1969 | MR | Zbl

[5] Shapiro H. S., “An algebraic theorem of E. Fischer, and the holomorphic Goursat problem”, Bull. London Math. Soc., 21 (1989), 513–537 | DOI | MR | Zbl

[6] Fischer E., “Ueber Differentiationsprozesse der Algebra”, J. Math., 148 (1917), 1–78 | Zbl

[7] Meril A., Struppa D. C., “Equivalence of Cauchy problems for entire and exponential type functions”, Bull. London Math. Soc., 17 (1985), 469–473 | DOI | MR | Zbl

[8] Newman D. J., Shapiro H. S., “Fischer spaces of entire functions”, Proc. Symp. Pure Math., 11 (1968), 360–369 | MR | Zbl

[9] Muggli H., “Differentialgleichungen unendlich hoher Ordnung mit konstanten Koeffizienten”, Comment. Math. Helv., 11 (1938), 151–179 | DOI | MR | Zbl

[10] Dedonne Zh., Shvarts L., “Dvoistvennost v prostranstvakh $(F)$ i $(LF)$”, Matematika, 2:2 (1958), 77–107

[11] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[12] Napalkov V. V., Shagapov I. A., “Postroenie tseloi periodicheskoi funktsii zadannogo rosta”, Kompleksnyi analiz, differentsialnye uravneniya, chislennye metody i prilozheniya. T. 1: Kompleksnyi analiz, IMVTs UMTs RAN, Ufa, 1996, 76–80