Saga of the Painlev\'e Problem and Analytic Capacity
Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 157-164

Voir la notice de l'article provenant de la source Math-Net.Ru

This note consists of two sections. The first one gives an account of an intriguing and dramatic story of solving (not completely) the so-called Painlevé problem that consists in describing the set of removable singularities for bounded holomorphic functions. In view of this, I indulge in proposing some reminiscences about bygone events. The second section gives yet another elementary proof of the Denjoy conjecture, which is a part of the Painlevé problem.
@article{TRSPY_2001_235_a10,
     author = {M. S. Mel'nikov},
     title = {Saga of the {Painlev\'e} {Problem} and {Analytic} {Capacity}},
     journal = {Informatics and Automation},
     pages = {157--164},
     publisher = {mathdoc},
     volume = {235},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a10/}
}
TY  - JOUR
AU  - M. S. Mel'nikov
TI  - Saga of the Painlev\'e Problem and Analytic Capacity
JO  - Informatics and Automation
PY  - 2001
SP  - 157
EP  - 164
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a10/
LA  - ru
ID  - TRSPY_2001_235_a10
ER  - 
%0 Journal Article
%A M. S. Mel'nikov
%T Saga of the Painlev\'e Problem and Analytic Capacity
%J Informatics and Automation
%D 2001
%P 157-164
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a10/
%G ru
%F TRSPY_2001_235_a10
M. S. Mel'nikov. Saga of the Painlev\'e Problem and Analytic Capacity. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 157-164. http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a10/