On the Convergence of Continued T-Fractions
Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 36-51

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a continued $\mathrm T$-fraction converges on the set $\{|z|$. Formulas (exact in a certain sense) for evaluating the radii $R_1$ and $R_2$ of these disks are given. For a $\mathrm T$-fraction with limit-periodic coefficients, a cut $\Gamma$ on the complex plane is explicitly specified such that this $\mathrm T$-fraction converges outside this cut. It is shown that the meromorphic function represented by this $\mathrm T$-fraction cannot be meromorphically continued (as a single-valued function) across any arc lying on $\Gamma$.
@article{TRSPY_2001_235_a1,
     author = {V. I. Buslaev},
     title = {On the {Convergence} of {Continued} {T-Fractions}},
     journal = {Informatics and Automation},
     pages = {36--51},
     publisher = {mathdoc},
     volume = {235},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a1/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - On the Convergence of Continued T-Fractions
JO  - Informatics and Automation
PY  - 2001
SP  - 36
EP  - 51
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a1/
LA  - ru
ID  - TRSPY_2001_235_a1
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T On the Convergence of Continued T-Fractions
%J Informatics and Automation
%D 2001
%P 36-51
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a1/
%G ru
%F TRSPY_2001_235_a1
V. I. Buslaev. On the Convergence of Continued T-Fractions. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 36-51. http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a1/