A~Quasiperiodic System of Polynomial Models of CR-Manifolds
Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 7-35

Voir la notice de l'article provenant de la source Math-Net.Ru

Polynomial models for the germs of real submanifolds of a complex space are constructed. For the germs whose Levi–Tanaka algebra has length 2, such a sufficiently well-studied model is given by a tangent quadric. It is shown that models of the third and fourth degrees (algebras of lengths 3 and 4) possess, in their codimension ranges, a full spectrum of properties that are completely analogous to the properties of tangent quadrics. For the constructed higher order models, a full spectrum of properties is obtained with the only exception that they are not fully universal.
@article{TRSPY_2001_235_a0,
     author = {V. K. Beloshapka},
     title = {A~Quasiperiodic {System} of {Polynomial} {Models} of {CR-Manifolds}},
     journal = {Informatics and Automation},
     pages = {7--35},
     publisher = {mathdoc},
     volume = {235},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a0/}
}
TY  - JOUR
AU  - V. K. Beloshapka
TI  - A~Quasiperiodic System of Polynomial Models of CR-Manifolds
JO  - Informatics and Automation
PY  - 2001
SP  - 7
EP  - 35
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a0/
LA  - ru
ID  - TRSPY_2001_235_a0
ER  - 
%0 Journal Article
%A V. K. Beloshapka
%T A~Quasiperiodic System of Polynomial Models of CR-Manifolds
%J Informatics and Automation
%D 2001
%P 7-35
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a0/
%G ru
%F TRSPY_2001_235_a0
V. K. Beloshapka. A~Quasiperiodic System of Polynomial Models of CR-Manifolds. Informatics and Automation, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 7-35. http://geodesic.mathdoc.fr/item/TRSPY_2001_235_a0/