The Bufferness Phenomenon in the \textit {RCLG} Seft-excited Oscillator: Theoretical Analysis and Experiment Results
Informatics and Automation, Differential equations. Certain mathematical problems of optimal control, Tome 233 (2001), pp. 153-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a mathematical model of an RCLG oscillator represented by a system of linear telegraph equations with a nonlinearity in the boundary condition, the buffer phenomenon is established; i.e. the existence of an arbitrary finite number of stable cycles is proved under a suitable choice of parameters. The results of an experimental analysis of this phenomenon are also presented.
@article{TRSPY_2001_233_a5,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {The {Bufferness} {Phenomenon} in the \textit {{RCLG}} {Seft-excited} {Oscillator:} {Theoretical} {Analysis} and {Experiment} {Results}},
     journal = {Informatics and Automation},
     pages = {153--207},
     publisher = {mathdoc},
     volume = {233},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_233_a5/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - The Bufferness Phenomenon in the \textit {RCLG} Seft-excited Oscillator: Theoretical Analysis and Experiment Results
JO  - Informatics and Automation
PY  - 2001
SP  - 153
EP  - 207
VL  - 233
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_233_a5/
LA  - ru
ID  - TRSPY_2001_233_a5
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T The Bufferness Phenomenon in the \textit {RCLG} Seft-excited Oscillator: Theoretical Analysis and Experiment Results
%J Informatics and Automation
%D 2001
%P 153-207
%V 233
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_233_a5/
%G ru
%F TRSPY_2001_233_a5
A. Yu. Kolesov; N. Kh. Rozov. The Bufferness Phenomenon in the \textit {RCLG} Seft-excited Oscillator: Theoretical Analysis and Experiment Results. Informatics and Automation, Differential equations. Certain mathematical problems of optimal control, Tome 233 (2001), pp. 153-207. http://geodesic.mathdoc.fr/item/TRSPY_2001_233_a5/

[1] Zakharov A. A., Kolesov Yu. S., “Prostranstvenno neodnorodnye rezhimy v zadache khischnik–zhertva”, Nelineinye kolebaniya i ekologiya, YarGU, Yaroslavl, 1984, 3–15 | MR

[2] Kolesov A. Yu., “Suschestvovanie asimptoticheski bolshogo chisla ustoichivykh beguschikh voln v odnoi trekhmernoi sisteme parabolicheskikh uravnenii”, Metody kachestvennoi teorii differentsialnykh uravnenii, Gork. un-t, Gorkii, 1986, 57–66 | MR | Zbl

[3] Kolesov A. Yu., “Avtokolebaniya singulyarno vozmuschennykh parabolicheskikh sistem pervoi stepeni negrubosti”, Mat. zametki, 49:5 (1991), 62–69 | MR | Zbl

[4] Kolesov A. Yu., “Bifurkatsiya periodicheskikh reshenii singulyarno vozmuschennykh parabolicheskikh sistem pervoi stepeni negrubosti”, Ukr. mat. zhurn., 42:8 (1990), 1037–1042 | MR

[5] Kolesov A. Yu., “Teoreticheskoe ob'yasnenie yavleniya diffuzionnoi bufernosti”, Modelirovanie dinamiki populyatsii, NNGU, N. Novgorod, 1990, 35–38

[6] Kolesov A. Yu., Kolesov Yu. S., “Bifurkatsiya avtokolebanii singulyarno vozmuschennogo volnovogo uravneniya”, DAN SSSR, 315:2 (1990), 281–283 | MR | Zbl

[7] Kolesov A. Yu., “Ustoichivost avtokolebanii telegrafnogo uravneniya, bifurtsiruyuschikh iz sostoyaniya ravnovesiya”, Mat. zametki, 51:2 (1992), 59–65 | MR | Zbl

[8] Kolesov A. Yu., Rozov N. Kh., “Postroenie periodicheskikh reshenii uravnenii tipa Bussineska s pomoschyu metoda kvazinormalnykh form”, Fund. i prikl. matematika, 1:1 (1995), 207–220 | MR | Zbl

[9] Kolesov A. Yu., “Suschestvovanie schetnogo chisla ustoichivykh tsiklov v sredakh s dispersiei”, Izv. RAN. Ser. mat., 59:3 (1995), 141–158 | MR | Zbl

[10] Utkin G. M., “Metod medlenno menyayuschikhsya stoyachikh voln v teorii raspredelennykh avtogeneratorov”, Radiotekhnika i elektronika, 2 (1969), 267–276

[11] Kambulov V. F., Kolesov A. Yu., “O yavlenii bufernosti v odnoi rezonansnoi giperbolicheskoi kraevoi zadache iz radiofiziki”, Mat. sb., 186:7 (1995), 77–96 | MR | Zbl

[12] Kambulov V. F, Kolesov A. Yu., “Ob odnom modelnom giperbolicheskom uravnenii, voznikayuschem v radiofizike”, Mat. modelirovanie, 8:1 (1996), 93–102 | MR | Zbl

[13] Kambulov V. F., Kolesov A. Yu., “O spetsifike generiruemykh kolebanii v RCLG-avtogeneratore s malym zatukhaniem v tsepi obratnoi svyazi”, Radiotekhnika i elektronika, 42:8 (1997), 1019–1024

[14] Kambulov V. F., Kolesov A. Yu., Rozov N. Kh., “Teoreticheskii i eksperimentalnyi analiz fenomena bufernosti v dlinnoi linii s tunnelnym diodom”, Dif. uravneniya, 33:5 (1997), 638–645 | MR | Zbl

[15] Kulikov A. N., “Issledovanie odnoi kraevoi zadachi, voznikayuschei v radiofizike”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1976, 67–85

[16] Vitt A. A., “K teorii skripichnoi struny”, ZhTF, 6:9 (1936), 1459–1479

[17] Koshlyakov N. S., Gliner E. B., Smirnov M. M., Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki, Vyssh. shk., M., 1970 | Zbl

[18] Sharkovskii A. N., Maistrenko Yu. L., Romanenko E. Yu., Raznostnye uravneniya i ikh prilozheniya, Nauk. dumka, Kiev, 1986 | MR

[19] Kolesov Yu. S., “Ustoichivost i bifurkatsiya beguschikh voln”, Nelineinye kolebaniya v zadachakh ekologii, YarGU, Yaroslavl, 1985, 3–10 | MR

[20] Kolesov Yu. S., Maiorov V. V., “Novyi metod issledovaniya ustoichivosti reshenii lineinykh differentsialnykh uravnenii s blizkimi k postoyannym pochti periodicheskimi koeffitsientami”, Dif. uravneniya, 10:10 (1974), 1778–1788 | MR | Zbl

[21] Kolesov A. Yu., “Parametricheskie kolebaniya reshenii telegrafnogo uravneniya s umerenno maloi diffuziei”, Sib. mat. zhurn., 33:6 (1992), 79–86 | MR | Zbl

[22] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[23] Kolesov Yu. S., “Ob ustoichivosti reshenii lineinykh differentsialnykh uravnenii parabolicheskogo tipa s pochti periodicheskimi koeffitsientami”, Tr. Mosk. mat. o-va, 36, 1978, 3–27 | MR | Zbl

[24] Vasileva A. B., Kaschenko S. A., Kolesov Yu. S., Rozov N. Kh., “Bifurkatsiya avtokolebanii nelineinykh parabolicheskikh uravnenii s maloi diffuziei”, Mat. sb., 130:4 (1986), 488–499 | MR

[25] Kolesov Yu. S., “Matematicheskaya teoriya RC-generatorov s raspredelennymi parametrami v tsepi obratnoi svyazi”, Differentsialnye uravneniya i ikh primeneniya, no. 2, In-t fiziki i matematiki AN LitSSR, Vilnyus, 1971, 68 s | MR | Zbl

[26] Kambulov V. F., “Garmonicheskie kolebaniya v avtogeneratore s LCRG-raspredelennymi parametrami v tsepi obratnoi svyazi”, Radiotekhnika i elektronika, 23:11 (1978), 2321–2326

[27] Kambulov V. F., “Dve zadachi, svyazannye s samogeneriruyuschimi liniyami”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1977, 31–59

[28] Kolesov Yu. S., Shvitra D. I., “Avtokolebaniya v dlinnoi linii s tunnelnym diodom”, Differentsialnye uravneniya i ikh primenenie, no. 18, In-t matematiki i kibernetiki AN LitSSR, Vilnyus, 1977, 27–48 | MR

[29] Kambulov V. F., “Raschet avtokolebanii v RCLG-generatorakh s raspredelennymi parametrami v tsepi obratnoi svyazi”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1976, 86–89

[30] Kolesov Yu. S., “Ob odnoi bifurkatsionnoi teoreme v teorii avtokolebanii raspredelennykh sistem”, Dif. uravneniya, 21:10 (1985), 1709–1713 | MR | Zbl

[31] Kolesov Yu. S., “Metod kvazinormalnykh form v zadache ob ustanovivshikhsya rezhimakh parabolicheskikh sistem s maloi diffuziei”, Ukr. mat. zhurn., 39:1 (1987), 28–34 | MR | Zbl

[32] Kolesov Yu. S., “Bifurkatsiya invariantnykh torov parabolicheskikh sistem s maloi diffuziei”, Mat. sb., 184:3 (1993), 121–136 | MR | Zbl

[33] Birkgan S. E., “Ob ustoichivosti reshenii differentsialno-raznostnykh uravnenii neitralnogo tipa s blizkimi k postoyannym pochti periodicheskimi koeffitsientami v sverkhkriticheskom sluchae”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1983, 3–15 | MR

[34] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[35] Mitropolskii Yu. A., Lykova O. B., Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1973 | MR

[36] Strygin V. V., Sobolev V. A., Razdelenie dvizhenii metodom integralnykh mnogoobrazii, Nauka, M., 1988 | MR | Zbl

[37] Anosov D. V., “O predelnykh tsiklakh sistem differentsialnykh uravnenii s malym parametrom pri starshikh proizvodnykh”, Mat. sb., 50:3 (1960), 299–334 | MR

[38] Reissing R., Sansone G., Konti R., Kachestvennaya teoriya nelineinykh differentsialnykh uravnenii, Nauka, M., 1974 | MR

[39] Mischenko E. F., Rozov N. Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975 | MR

[40] Kolesov A. Yu., “Relaksatsionnye tsikly nelineinogo volnovogo uravneniya, gladko zavisyaschego ot parametrov”, Dokl. RAN, 341:2 (1995), 158–160 | MR | Zbl

[41] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[42] Kulikov A. N., “Integralnye mnogoobraziya giperbolicheskikh uravnenii v sluchae, blizkom k kriticheskomu odnoi pary chisto mnimykh znachenii”, Vestn. Yarosl. un-ta, 1975, 94–117 | MR

[43] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR

[44] Kolesov Yu. S., “Asimptotika i ustoichivost nelineinykh parametricheskikh kolebanii singulyarno vozmuschennogo telegrafnogo uravneniya”, Mat. sb., 186:10 (1995), 57–72 | MR | Zbl