The Topological Structure of the Phase Portrait of a~Typical Fiber of Optimal Synthesis for Chattering Problems
Informatics and Automation, Differential equations. Certain mathematical problems of optimal control, Tome 233 (2001), pp. 125-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper continues the program of optimal chattering synthesis design for problems with a multidimensional control. In contrast to the paper where the case of independent constraints on different components of the control was explored, here the control takes its values in a two-dimensional simplex. In this case, one again deals with integral varieties like the Reeb foliation; however, the inclusion of these varieties in the phase space is much more exotic. This paper is devoted to the description of the corresponding phase portrait.
@article{TRSPY_2001_233_a4,
     author = {M. I. Zelikin and N. B. Melnikov and R. Hildebrand},
     title = {The {Topological} {Structure} of the {Phase} {Portrait} of {a~Typical} {Fiber} of {Optimal} {Synthesis} for {Chattering} {Problems}},
     journal = {Informatics and Automation},
     pages = {125--152},
     publisher = {mathdoc},
     volume = {233},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_233_a4/}
}
TY  - JOUR
AU  - M. I. Zelikin
AU  - N. B. Melnikov
AU  - R. Hildebrand
TI  - The Topological Structure of the Phase Portrait of a~Typical Fiber of Optimal Synthesis for Chattering Problems
JO  - Informatics and Automation
PY  - 2001
SP  - 125
EP  - 152
VL  - 233
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_233_a4/
LA  - ru
ID  - TRSPY_2001_233_a4
ER  - 
%0 Journal Article
%A M. I. Zelikin
%A N. B. Melnikov
%A R. Hildebrand
%T The Topological Structure of the Phase Portrait of a~Typical Fiber of Optimal Synthesis for Chattering Problems
%J Informatics and Automation
%D 2001
%P 125-152
%V 233
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_233_a4/
%G ru
%F TRSPY_2001_233_a4
M. I. Zelikin; N. B. Melnikov; R. Hildebrand. The Topological Structure of the Phase Portrait of a~Typical Fiber of Optimal Synthesis for Chattering Problems. Informatics and Automation, Differential equations. Certain mathematical problems of optimal control, Tome 233 (2001), pp. 125-152. http://geodesic.mathdoc.fr/item/TRSPY_2001_233_a4/

[1] Zelikin M. I., “Optimalnyi sintez, soderzhaschii posledovatelno vlozhennye chettering-rassloeniya”, Tr. MIAN, 224, 1999, 152–164 | MR | Zbl

[2] {Zelikin M.I.}, “Sintez optimalnykh traektorii, opredelyayuschii sloenie Riba”, Tr. MIAN, 89–94 | MR | Zbl

[3] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[4] Kostrikin A. I., Manin Yu. I., Lineinaya algebra i geometriya, MGU, M., 1980 | MR

[5] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR

[6] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969

[7] Fuller A. T., “Dimensional properties of optimal and sub-optimal nonlinear control systems”, J. Franklin Inst., 289 (1970), 379–393 | DOI | MR | Zbl

[8] Godbillon C., Géométrie différentielle et méchanique analytique, Hermann, Paris, 1967 | MR

[9] Kelley H. J., Kopp R. E., Moyer M. G., “Singular extremals”, Topics in optimization, Acad. Press, N.Y., 1967, 63–101 | MR

[10] Marchal C., “Chattering arcs and chattering controls”, J. Optim. Theory and Appl., 11 (1973), 441–468 | DOI | MR | Zbl

[11] Nitecki Z., Differentiable dynamics, MIT Press, Cambridge, MA, 1971 | MR

[12] {Zelikin M.I., Borisov V.F.}, Theory of chattering control: With applications to astronautics, robotics, economics and engineering, Syst. Contr.: Found. Appl., Birkhäuser, Boston etc., 1994 | MR | Zbl