Synthesis of Optimal Trajectories That Defines the Reeb Foliation
Informatics and Automation, Differential equations. Certain mathematical problems of optimal control, Tome 233 (2001), pp. 89-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two analogues of Fuller's problems with multidimensional control are considered. These problems play an important role in the framework of program of optimal chattering synthesis design. The optimal synthesis for these problems has an interesting topological structure described by variants of the Reeb foliation.
@article{TRSPY_2001_233_a2,
     author = {M. I. Zelikin},
     title = {Synthesis of {Optimal} {Trajectories} {That} {Defines} the {Reeb} {Foliation}},
     journal = {Informatics and Automation},
     pages = {89--94},
     publisher = {mathdoc},
     volume = {233},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_233_a2/}
}
TY  - JOUR
AU  - M. I. Zelikin
TI  - Synthesis of Optimal Trajectories That Defines the Reeb Foliation
JO  - Informatics and Automation
PY  - 2001
SP  - 89
EP  - 94
VL  - 233
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_233_a2/
LA  - ru
ID  - TRSPY_2001_233_a2
ER  - 
%0 Journal Article
%A M. I. Zelikin
%T Synthesis of Optimal Trajectories That Defines the Reeb Foliation
%J Informatics and Automation
%D 2001
%P 89-94
%V 233
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_233_a2/
%G ru
%F TRSPY_2001_233_a2
M. I. Zelikin. Synthesis of Optimal Trajectories That Defines the Reeb Foliation. Informatics and Automation, Differential equations. Certain mathematical problems of optimal control, Tome 233 (2001), pp. 89-94. http://geodesic.mathdoc.fr/item/TRSPY_2001_233_a2/

[1] Zelikin M. I., Borisov V. F., “Rezhimy uchaschayuschikhsya pereklyuchenii v zadachakh optimalnogo upravleniya”, Tr. MIAN, 197, 1991, 85–166 | MR

[2] Zelikin M. I., Borisov V. F., Theory of chattering control: With applications to astronautics, robotics, economics, and engineering, Syst. Contr.: Found. Appl., Birkhäuser, Boston etc., 1994 | MR | Zbl