On the Compactness of Embeddings of Weighted Sobolev Spaces on a~Domain with Irregular Boundary
Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 72-93
Voir la notice de l'article provenant de la source Math-Net.Ru
Sufficient conditions are established for the compactness of the embedding of the weighted Sobolev spaces $W_p^s$, $s\in\mathbb N$, into the weighted Lebesgue space $L_q$ for domains with irregular boundaries, in particular, for a cusp domain. The conditions imposed on the domain are formulated in simple geometrical terms (of a degenerate flexible cone).
@article{TRSPY_2001_232_a8,
author = {O. V. Besov},
title = {On the {Compactness} of {Embeddings} of {Weighted} {Sobolev} {Spaces} on {a~Domain} with {Irregular} {Boundary}},
journal = {Informatics and Automation},
pages = {72--93},
publisher = {mathdoc},
volume = {232},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a8/}
}
O. V. Besov. On the Compactness of Embeddings of Weighted Sobolev Spaces on a~Domain with Irregular Boundary. Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 72-93. http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a8/