Polynomials of Least Deviation from Zero and Chebyshev-Type Cubature Formulas
Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 45-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem about a polynomial of least deviation from zero on a multidimensional sphere is solved in some special cases. For known spherical configurations, a family of subspaces of harmonic polynomials is described for which the Chebyshev-type cubature formulas on the sphere are exact.
@article{TRSPY_2001_232_a6,
     author = {N. N. Andreev and V. A. Yudin},
     title = {Polynomials of {Least} {Deviation} from {Zero} and {Chebyshev-Type} {Cubature} {Formulas}},
     journal = {Informatics and Automation},
     pages = {45--57},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a6/}
}
TY  - JOUR
AU  - N. N. Andreev
AU  - V. A. Yudin
TI  - Polynomials of Least Deviation from Zero and Chebyshev-Type Cubature Formulas
JO  - Informatics and Automation
PY  - 2001
SP  - 45
EP  - 57
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a6/
LA  - ru
ID  - TRSPY_2001_232_a6
ER  - 
%0 Journal Article
%A N. N. Andreev
%A V. A. Yudin
%T Polynomials of Least Deviation from Zero and Chebyshev-Type Cubature Formulas
%J Informatics and Automation
%D 2001
%P 45-57
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a6/
%G ru
%F TRSPY_2001_232_a6
N. N. Andreev; V. A. Yudin. Polynomials of Least Deviation from Zero and Chebyshev-Type Cubature Formulas. Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 45-57. http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a6/

[1] Chebyshev P. L., Poln. sobr. soch., Izd-vo AN SSSR, M., L., 1948

[2] Korkin A. I., Zolotarev E. I., “Sur un certain minimum”, Zolotarev E. I., Poln. sobr. soch., t. 1, Izd-vo AN SSSR, L., 1931, 138–153

[3] Kolmogorov A. N., “Zamechanie po povodu mnogochlenov P. L. Chebysheva, naimenee uklonyayuschikhsya ot zadannoi funktsii”, UMN, 3:1 (1948), 216–221 | MR

[4] Reimer M., “Spherical polynomial approximations: A survey”, Advances in multivariate approximation, Math. Res., 107, eds. W. Haussmann, K. Jetter, M. Reimer, Wiley–VCH, Berlin, 1999, 231–252 | MR | Zbl

[5] Delsarte P., Goethals J. M., Seidel J. J., “Spherical codes and designs”, Geom. dedicata, 6 (1977), 363–388 | MR | Zbl

[6] Sobolev S. L., “O formulakh mekhanicheskikh kubatur na poverkhnosti sfery”, Sib. mat. zhurn., 3:5 (1962), 769–796 | MR | Zbl

[7] Humphreys J. E., Reflection groups and Coxeter groups, Cambridge Univ. Press, Cambridge, 1994 | MR

[8] Mehta M. L., “Basic sets of invariant polynomials for finite reflection groups”, Commun. Algebra, 16:5 (1988), 1083–1098 | DOI | MR | Zbl

[9] Andreev N. N., Yudin V. A., “Approximation problems in discrete geometry”, Advances in multivariate approximation, Math. Res., 107, eds. W. Haussmann, K. Jetter, M. Reimer, Wiley–VCH, Berlin, 1999, 19–32 | MR | Zbl

[10] Andreev N. N., “Odin sfericheskii kod”, UMN, 54:1 (1999), 255–256 | MR | Zbl

[11] Andreev N. N., “Minimalnyi dizain 11-go poryadka na trekhmernoi sfere”, Mat. zametki, 67:4 (2000), 489–497 | MR | Zbl

[12] Bernshtein S. N., Poln. sobr. soch., T. 1, 2, Izd-vo AN SSSR, M., 1952–1954

[13] Nikolskii S. M., Kvadraturnye formuly, 2-e izd., Nauka, M., 1974 | MR

[14] Boyvalenkov P., Danev D., Kazakov P., “Indexes of spherical codes”, Codes and association schemes, DIMACS: Ser. Discr. Math. and Theor. Comput. Sci., 56, eds. A. Barg, S. Litsyn, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl