Limit Investigation at Infinity of the Sobolev--Wiener Function Classes in Tube Domains
Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 327-335.

Voir la notice de l'article provenant de la source Math-Net.Ru

In terms of the Sobolev–Wiener function spaces, the conditions are established under which the functions oscillate with respect to a chosen variable and stabilize to zero.
@article{TRSPY_2001_232_a26,
     author = {S. V. Uspenskii and E. N. Vasil'eva},
     title = {Limit {Investigation} at {Infinity} of the {Sobolev--Wiener} {Function} {Classes} in {Tube} {Domains}},
     journal = {Informatics and Automation},
     pages = {327--335},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a26/}
}
TY  - JOUR
AU  - S. V. Uspenskii
AU  - E. N. Vasil'eva
TI  - Limit Investigation at Infinity of the Sobolev--Wiener Function Classes in Tube Domains
JO  - Informatics and Automation
PY  - 2001
SP  - 327
EP  - 335
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a26/
LA  - ru
ID  - TRSPY_2001_232_a26
ER  - 
%0 Journal Article
%A S. V. Uspenskii
%A E. N. Vasil'eva
%T Limit Investigation at Infinity of the Sobolev--Wiener Function Classes in Tube Domains
%J Informatics and Automation
%D 2001
%P 327-335
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a26/
%G ru
%F TRSPY_2001_232_a26
S. V. Uspenskii; E. N. Vasil'eva. Limit Investigation at Infinity of the Sobolev--Wiener Function Classes in Tube Domains. Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 327-335. http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a26/

[1] Uspenskii S. V., “O teoremakh vlozheniya dlya vesovykh klassov”, Tr. MIAN, 60, 1961, 282–303 | MR | Zbl

[2] Sobolev S. L., “Plotnost finitnykh funktsii v prostranstve $L_q^m(E_n)$”, Sib. mat. zhurn., 4:3 (1963), 673–682 | MR | Zbl

[3] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 808 pp. | MR

[4] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996, 480 pp. | MR

[5] Kudryavtsev L. D., “O stabilizatsii funktsii v beskonechnosti k resheniyam differentsialnykh uravnenii”, Dif. uravneniya, 11:2 (1975), 332–357

[6] Sedov V. N., “O funktsiyakh, obraschayuschikhsya v beskonechnosti v polinom”, Teoremy vlozheniya i prodolzheniya, Nauka, M., 1970, 204–212 | MR

[7] Uspenskii S. V., Chistyakov B. N., “O vykhode na polinom pri stremlenii $|x|\to\infty$ reshenii odnogo klassa psevdodifferentsialnykh uravnenii”, Sib. mat. zhurn., 16:5 (1975), 1053–1070 | MR | Zbl

[8] Uspenskii S. V., Vasileva E. N., Yanov S. I., “O differentsialnykh svoistvakh resheniya pervoi smeshannoi kraevoi zadachi dlya sistemy Soboleva”, Tr. MIAN, 227, 1999, 311–319 | MR | Zbl

[9] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauch. kniga, Novosibirsk, 1998, 436 pp. | MR | Zbl

[10] Uspenskii S. V., Vasileva E. N., “Kachestvennoe issledovanie resheniya odnoi zadachi S. L. Soboleva pri $t\to\infty$”, Tr. MIAN, 210, 1995, 274–283 | MR | Zbl

[11] Uspenskii S. V., Demidenko G. V., Perepelkin G. V., Teoremy vlozheniya i prilozheniya k differentsialnym uravneniyam, Nauka, Novosibirsk, 1984, 223 pp. | Zbl

[12] Tkachev D. L., Shmyrev G. A., “O povedenii na beskonechnosti reshenii zadachi Dirikhle dlya ravnomerno ellipticheskogo operatora”, Differentsialnye uravneniya s chastnymi proizvodnymi, Tr. seminara S. L. Soboleva, no. 2, Novosibirsk, 1980, 79–91 | MR | Zbl

[13] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. mat., 18:1 (1954), 3–50 | MR | Zbl

[14] Uspenskii S. V., Demidenko G. V., “O smeshannykh kraevykh zadachakh dlya odnogo klassa uravnenii, ne razreshennykh otnositelno starshei proizvodnoi”, Differentsialnye uravneniya s chastnymi proizvodnymi, Tr. seminara S. L. Soboleva, no. 2, Novosibirsk, 1980, 92–115 | MR | Zbl