On the Uniform Convergence of the Fourier Series of Functions of Bounded Variation
Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 318-326.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that, if a function $f$ is continuous at each point of an interval $[a, b]$ and has bounded variation on the period, then the Fourier series of $f$ is uniformly convergent on $[a, b]$. This assertion is strengthened here as follows. Let $\{ n_j \}$ be an increasing sequence of positive integers that is representable as a union of a finite number of lacunary sequences. If the Fourier series of $f$ is divided into blocks consisting of the harmonics from $n_j$ to $n_{j + 1} - 1$, then the series formed by the absolute values of these blocks is uniformly convergent on $[a, b]$. Estimates for the convergence rate of the Fourier series of functions whose derivatives of prescribed order have bounded variation are strengthened likewise.
@article{TRSPY_2001_232_a25,
     author = {S. A. Telyakovskii},
     title = {On the {Uniform} {Convergence} of the {Fourier} {Series} of {Functions} of {Bounded} {Variation}},
     journal = {Informatics and Automation},
     pages = {318--326},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a25/}
}
TY  - JOUR
AU  - S. A. Telyakovskii
TI  - On the Uniform Convergence of the Fourier Series of Functions of Bounded Variation
JO  - Informatics and Automation
PY  - 2001
SP  - 318
EP  - 326
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a25/
LA  - ru
ID  - TRSPY_2001_232_a25
ER  - 
%0 Journal Article
%A S. A. Telyakovskii
%T On the Uniform Convergence of the Fourier Series of Functions of Bounded Variation
%J Informatics and Automation
%D 2001
%P 318-326
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a25/
%G ru
%F TRSPY_2001_232_a25
S. A. Telyakovskii. On the Uniform Convergence of the Fourier Series of Functions of Bounded Variation. Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 318-326. http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a25/

[1] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR

[2] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[3] Stechkin S. B., “Ob absolyutnoi skhodimosti ryadov Fure (trete soobschenie)”, Izv. AN SSSR. Ser. mat., 20 (1956), 385–412 ; Избр. труды. Математика, Физматлит, М., 1998, 155–180 | Zbl | MR

[4] Telyakovskii S. A., “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 219, 1997, 378–386 | MR | Zbl

[5] Popov A. Yu., Telyakovskii S. A., “K otsenkam chastnykh summ ryadov Fure funktsii ogranichennoi variatsii”, Izv. vuzov. Matematika, 2000, no. 1, 51–55 | MR | Zbl

[6] Nikolskii S. M., “Ryady Fure funktsii, imeyuschikh proizvodnuyu ogranichennoi variatsii”, Izv. AN SSSR. Ser. mat., 13 (1949), 513–532