On Integral Operators with Variable Limits of Integration
Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 298-317

Voir la notice de l'article provenant de la source Math-Net.Ru

Integral Hardy-type operators with variable limits of integration are studied. For these operators, the boundedness and compactness criteria are obtained and applications are considered to the embeddings of the weighted Sobolev spaces on a half-axis into the Lebesgue spaces.
@article{TRSPY_2001_232_a24,
     author = {V. D. Stepanov and E. P. Ushakova},
     title = {On {Integral} {Operators} with {Variable} {Limits} of {Integration}},
     journal = {Informatics and Automation},
     pages = {298--317},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a24/}
}
TY  - JOUR
AU  - V. D. Stepanov
AU  - E. P. Ushakova
TI  - On Integral Operators with Variable Limits of Integration
JO  - Informatics and Automation
PY  - 2001
SP  - 298
EP  - 317
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a24/
LA  - ru
ID  - TRSPY_2001_232_a24
ER  - 
%0 Journal Article
%A V. D. Stepanov
%A E. P. Ushakova
%T On Integral Operators with Variable Limits of Integration
%J Informatics and Automation
%D 2001
%P 298-317
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a24/
%G ru
%F TRSPY_2001_232_a24
V. D. Stepanov; E. P. Ushakova. On Integral Operators with Variable Limits of Integration. Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 298-317. http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a24/