More on a~Boundary Value Problem with Polynomials
Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 286-288

Voir la notice de l'article provenant de la source Math-Net.Ru

An approximation in Sobolev classes is obtained to the solution of a general boundary value problem for a self-adjoint elliptic operator of order $2l$ with constant coefficients on an $n$-dimensional ellipsoid. The right-hand side of the equation is a function from the class $W_2^r$, and the boundary conditions are homogeneous. The approximation is obtained by algebraic polynomials that are solutions to the boundary value problem for the same differential operator.
@article{TRSPY_2001_232_a22,
     author = {S. M. Nikol'skii},
     title = {More on {a~Boundary} {Value} {Problem} with {Polynomials}},
     journal = {Informatics and Automation},
     pages = {286--288},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a22/}
}
TY  - JOUR
AU  - S. M. Nikol'skii
TI  - More on a~Boundary Value Problem with Polynomials
JO  - Informatics and Automation
PY  - 2001
SP  - 286
EP  - 288
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a22/
LA  - ru
ID  - TRSPY_2001_232_a22
ER  - 
%0 Journal Article
%A S. M. Nikol'skii
%T More on a~Boundary Value Problem with Polynomials
%J Informatics and Automation
%D 2001
%P 286-288
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a22/
%G ru
%F TRSPY_2001_232_a22
S. M. Nikol'skii. More on a~Boundary Value Problem with Polynomials. Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 286-288. http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a22/