Nonexistence of Weak Solutions for Some Degenerate and Singular Hyperbolic Problems on $\mathbb R_+^{n+1}$
Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 248-267

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorems concerning the absence of weak solutions are proved for a wide class of evolution equations and inequalities. This class includes, in particular, the inequalities with degenerate and singular operators of hyperbolic type.
@article{TRSPY_2001_232_a20,
     author = {E. Mitidieri and S. I. Pohozaev},
     title = {Nonexistence of {Weak} {Solutions} for {Some} {Degenerate} and {Singular} {Hyperbolic} {Problems} on $\mathbb R_+^{n+1}$},
     journal = {Informatics and Automation},
     pages = {248--267},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a20/}
}
TY  - JOUR
AU  - E. Mitidieri
AU  - S. I. Pohozaev
TI  - Nonexistence of Weak Solutions for Some Degenerate and Singular Hyperbolic Problems on $\mathbb R_+^{n+1}$
JO  - Informatics and Automation
PY  - 2001
SP  - 248
EP  - 267
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a20/
LA  - ru
ID  - TRSPY_2001_232_a20
ER  - 
%0 Journal Article
%A E. Mitidieri
%A S. I. Pohozaev
%T Nonexistence of Weak Solutions for Some Degenerate and Singular Hyperbolic Problems on $\mathbb R_+^{n+1}$
%J Informatics and Automation
%D 2001
%P 248-267
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a20/
%G ru
%F TRSPY_2001_232_a20
E. Mitidieri; S. I. Pohozaev. Nonexistence of Weak Solutions for Some Degenerate and Singular Hyperbolic Problems on $\mathbb R_+^{n+1}$. Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 248-267. http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a20/