Nonexistence of Weak Solutions for Some Degenerate and Singular Hyperbolic Problems on $\mathbb R_+^{n+1}$
Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 248-267.

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorems concerning the absence of weak solutions are proved for a wide class of evolution equations and inequalities. This class includes, in particular, the inequalities with degenerate and singular operators of hyperbolic type.
@article{TRSPY_2001_232_a20,
     author = {E. Mitidieri and S. I. Pohozaev},
     title = {Nonexistence of {Weak} {Solutions} for {Some} {Degenerate} and {Singular} {Hyperbolic} {Problems} on $\mathbb R_+^{n+1}$},
     journal = {Informatics and Automation},
     pages = {248--267},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a20/}
}
TY  - JOUR
AU  - E. Mitidieri
AU  - S. I. Pohozaev
TI  - Nonexistence of Weak Solutions for Some Degenerate and Singular Hyperbolic Problems on $\mathbb R_+^{n+1}$
JO  - Informatics and Automation
PY  - 2001
SP  - 248
EP  - 267
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a20/
LA  - ru
ID  - TRSPY_2001_232_a20
ER  - 
%0 Journal Article
%A E. Mitidieri
%A S. I. Pohozaev
%T Nonexistence of Weak Solutions for Some Degenerate and Singular Hyperbolic Problems on $\mathbb R_+^{n+1}$
%J Informatics and Automation
%D 2001
%P 248-267
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a20/
%G ru
%F TRSPY_2001_232_a20
E. Mitidieri; S. I. Pohozaev. Nonexistence of Weak Solutions for Some Degenerate and Singular Hyperbolic Problems on $\mathbb R_+^{n+1}$. Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 248-267. http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a20/

[1] Brezis H., Cabré X., “Some simple nonlinear PDE's without solutions”, Boll. Unione Mat. Ital. B., 8 (1998), 223–262 | MR | Zbl

[2] Del Santo D., Georgiev V., Mitidieri E., “Global existence of solutions and formation of singularities for a class of hyperbolic systems”, Geometrical optics and related topics, Progr. Nonlin. Diff. Equat., 32, eds. F. Colombini, N. Lerner, Birkhäuser, Boston, 1997, 117–140 | MR | Zbl

[3] Deng K., Levine H. A., “The role of critical exponent in blow-up theorem: the sequel”, J. Math. Anal. and Appl., 243:1 (2000), 85–126 | DOI | MR | Zbl

[4] Egorov Y. V., Galaktionov V. A., Kondratiev V. A., Pohozaev S. I., “On the necessary condictions of global existence of solutions to a quasilinear inequality in the half-space”, C. R. Acad. Sci. Paris. Sér. 1: Math., 330:2 (2000), 93–98 | MR | Zbl

[5] Hayakawa K., “On the nonexistence of global solutions of some semilinear parabolic equations”, Proc. Japan Acad. Sci., 49 (1973), 503–505 | DOI | MR | Zbl

[6] John F., “Blow-up of solutions of nonlinear wave equations in three space dimensions”, Manuscr. Math., 28 (1979), 235–268 | DOI | MR | Zbl

[7] John F., “Nonlinear wave equations, formation of singularities”, Univ. Lect. Ser., 2, Amer. Math. Soc., 1990, 503–525 | MR

[8] Kato T., “Blow-up of solutions of some nonlinear hyperbolic equations”, Commun. Pure and Appl. Math., 33 (1980), 501–505 | DOI | MR | Zbl

[9] Schaeffer J., “The equation $u_{tt}-\Delta u=|u|^{p}$ for the critical value of $p$”, Proc. Roy. Soc. Edinburgh A, 101 (1985), 31–44 | MR | Zbl

[10] Sideris T., “Non-existence of global solutions to semilinear wave equations in high dimensions”, J. Diff. Equat., 52 (1984), 378–406 | DOI | MR | Zbl

[11] Strauss W. A., “Nonlinear scattering theory”, Scattering theory in mathematical physics, D. Reidel, Dordrecht, 1979, 53–79

[12] Strauss W. A., “Nonlinear scattering at low energy”, J. Funct. Anal., 41 (1981), 110–133 | DOI | MR | Zbl

[13] Strauss W. A., Nonlinear wave equation, CBMS Reg. Conf. Ser. Math., 73, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl

[14] Pohozaev S. I., Veron L. e, Blow-up results for nonlinear hyperbolic inequalities, Preprint No 181/99. Univ. Tours, Ann. Scuola Norm. Super. Pisa, 1999 (to appear) | MR

[15] Galaktionov V. A., Levine H. A., “A general approach to critical Fujita exponents in nonlinear parabolic problems”, Nonlin. Anal., 34:7 (1998), 1005–1027 | DOI | MR | Zbl

[16] Galaktionov V. A., Pohozaev S. I., Blow-up, critical exponents and asymptotic spectra for nonlinear hyperbolic equations, Preprint Univ. Bath., 2000

[17] Fujita H., “On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha}$”, J. Fac. Sci. Univ. Tokio. Sec. 1A, 13 (1966), 109–124 | MR | Zbl

[18] Levine H. A., “The role of critical exponents in blow-up theorems”, SIAM Rev., 32:2 (1990), 262–288 | DOI | MR | Zbl

[19] Mitidieri E., Pohozaev S. I., “Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on $\mathbb{R}^n$”, J. Evolution Equat., 1:2 (2001) | MR | Zbl

[20] Mitidieri E., Pokhozhaev S. I., “Otsutstvie polozhitelnykh reshenii dlya kvazilineinykh ellipticheskikh zadach v $\mathbb{R}^N$”, Tr. MIAN, 227, 1999, 192–222 | MR | Zbl

[21] Mitidieri E., Pokhozhaev S. I., “Otsutstvie globalnykh polozhitelnykh reshenii dlya kvazilineinykh ellipticheskikh neravenstv”, Dokl. RAN, 359:4 (1998) | MR | Zbl

[22] Korman P., “On blow up of solutions of nonlinear evolution equations”, Proc. Amer. Math. Soc., 103:1 (1988), 189–197 | DOI | MR | Zbl