Nonexistence of Weak Solutions for Some Degenerate and Singular Hyperbolic Problems on $\mathbb R_+^{n+1}$
Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 248-267
Voir la notice de l'article provenant de la source Math-Net.Ru
Theorems concerning the absence of weak solutions are proved for a wide class of evolution equations and inequalities. This class includes, in particular, the inequalities with degenerate and singular operators of hyperbolic type.
@article{TRSPY_2001_232_a20,
author = {E. Mitidieri and S. I. Pohozaev},
title = {Nonexistence of {Weak} {Solutions} for {Some} {Degenerate} and {Singular} {Hyperbolic} {Problems} on $\mathbb R_+^{n+1}$},
journal = {Informatics and Automation},
pages = {248--267},
publisher = {mathdoc},
volume = {232},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a20/}
}
TY - JOUR
AU - E. Mitidieri
AU - S. I. Pohozaev
TI - Nonexistence of Weak Solutions for Some Degenerate and Singular Hyperbolic Problems on $\mathbb R_+^{n+1}$
JO - Informatics and Automation
PY - 2001
SP - 248
EP - 267
VL - 232
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a20/
LA - ru
ID - TRSPY_2001_232_a20
ER -
%0 Journal Article
%A E. Mitidieri
%A S. I. Pohozaev
%T Nonexistence of Weak Solutions for Some Degenerate and Singular Hyperbolic Problems on $\mathbb R_+^{n+1}$
%J Informatics and Automation
%D 2001
%P 248-267
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a20/
%G ru
%F TRSPY_2001_232_a20
E. Mitidieri; S. I. Pohozaev. Nonexistence of Weak Solutions for Some Degenerate and Singular Hyperbolic Problems on $\mathbb R_+^{n+1}$. Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 248-267. http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a20/