On Convergence of Weak Greedy Algorithms
Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 236-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the convergence, in a Hilbert space, of a Weak Greedy Algorithm (WGA) which is a modification of a Pure Greedy Algorithm (PGA). At the $m$th step of a WGA, we choose an approximating element from a given dictionary $\mathcal D$ satisfying the relation $|\langle f^\tau _{m-1},\varphi ^\tau _m\rangle | \ge t_m \sup _{g\in \mathcal D}|\langle f^\tau _{m-1},g\rangle |$ with $0\le t_m\le 1$, which is weaker than the corresponding condition in a PGA. It is known that a WGA converges if $\sum _{k=1}^\infty \frac {t_k}{k} = \infty$. The main result of this paper is the following theorem. Let $t_1\ge t_2\ge \dots \ge 0$ and the corresponding WGA converges for all elements of any separable Hilbert space and any dictionary. Then, $\sum _{k=1}^\infty\frac {t_k}{k} = \infty$.
@article{TRSPY_2001_232_a19,
     author = {E. D. Livshits and V. N. Temlyakov},
     title = {On {Convergence} of {Weak} {Greedy} {Algorithms}},
     journal = {Informatics and Automation},
     pages = {236--247},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a19/}
}
TY  - JOUR
AU  - E. D. Livshits
AU  - V. N. Temlyakov
TI  - On Convergence of Weak Greedy Algorithms
JO  - Informatics and Automation
PY  - 2001
SP  - 236
EP  - 247
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a19/
LA  - ru
ID  - TRSPY_2001_232_a19
ER  - 
%0 Journal Article
%A E. D. Livshits
%A V. N. Temlyakov
%T On Convergence of Weak Greedy Algorithms
%J Informatics and Automation
%D 2001
%P 236-247
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a19/
%G ru
%F TRSPY_2001_232_a19
E. D. Livshits; V. N. Temlyakov. On Convergence of Weak Greedy Algorithms. Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 236-247. http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a19/

[1] Temlyakov V. N., “Weak greedy algorithms”, Adv. Comput. Math., 12 (2000), 213–227 | DOI | MR | Zbl

[2] Schmidt E., “Zur Theorie der linearen und nichtlinearen Integralgleichungen, I”, Math. Ann., 63 (1906–1907), 433–476 | DOI | MR

[3] Friedman J. H., Stuetzle W., “Projection pursuit regression”, J. Amer. Statist. Assoc., 76 (1981), 817–823 | DOI | MR

[4] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965 | MR