On the Absence of Solutions for a~Class of Singular Semilinear Differential Inequalities
Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 223-235

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonexistence of solutions to certain semilinear differential inequalities in a bounded domain is established. A model problem for such inequalities is $-\Delta u\ge |u|^q/|x|^\sigma$ ($\sigma \ge 2$) in a ball $B_R$. Similar evolution inequalities and fourth-order problems with the operator $\Delta ^2$ are analyzed. The proofs are based on the method of test functions.
@article{TRSPY_2001_232_a18,
     author = {G. G. Laptev},
     title = {On the {Absence} of {Solutions} for {a~Class} of {Singular} {Semilinear} {Differential} {Inequalities}},
     journal = {Informatics and Automation},
     pages = {223--235},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a18/}
}
TY  - JOUR
AU  - G. G. Laptev
TI  - On the Absence of Solutions for a~Class of Singular Semilinear Differential Inequalities
JO  - Informatics and Automation
PY  - 2001
SP  - 223
EP  - 235
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a18/
LA  - ru
ID  - TRSPY_2001_232_a18
ER  - 
%0 Journal Article
%A G. G. Laptev
%T On the Absence of Solutions for a~Class of Singular Semilinear Differential Inequalities
%J Informatics and Automation
%D 2001
%P 223-235
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a18/
%G ru
%F TRSPY_2001_232_a18
G. G. Laptev. On the Absence of Solutions for a~Class of Singular Semilinear Differential Inequalities. Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 223-235. http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a18/