Asymptotics of Solutions to Differential Equations near Singular Points
Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 194-217

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are obtained under which all solutions to a normal system of equations asymptotically or strongly asymptotically approximate to polynomials as the argument tends to infinity. For the system of the form $L\mathbf x=\mathbf f$, where $L$ is a first-order linear differential operator, conditions are found under which all its solutions $L$-asymptotically approximate to the solutions of the homogeneous system $L\mathbf x=\mathbf 0$ as the argument tends to the singular point of the former system.
@article{TRSPY_2001_232_a16,
     author = {L. D. Kudryavtsev},
     title = {Asymptotics of {Solutions} to {Differential} {Equations} near {Singular} {Points}},
     journal = {Informatics and Automation},
     pages = {194--217},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a16/}
}
TY  - JOUR
AU  - L. D. Kudryavtsev
TI  - Asymptotics of Solutions to Differential Equations near Singular Points
JO  - Informatics and Automation
PY  - 2001
SP  - 194
EP  - 217
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a16/
LA  - ru
ID  - TRSPY_2001_232_a16
ER  - 
%0 Journal Article
%A L. D. Kudryavtsev
%T Asymptotics of Solutions to Differential Equations near Singular Points
%J Informatics and Automation
%D 2001
%P 194-217
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a16/
%G ru
%F TRSPY_2001_232_a16
L. D. Kudryavtsev. Asymptotics of Solutions to Differential Equations near Singular Points. Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 194-217. http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a16/