Best Approximation and Symmetric Decreasing Rearrangements of Functions
Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 179-193

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of estimating the best approximation by a subspace of classes of functions of $n$ variables defined by restrictions imposed on the modulus of continuity is considered on the basis of the duality principle. An approach is analyzed that is connected with the representation of a function of $n$ variables as a countable sum of simple functions and the subsequent transition to spatial symmetric decreasing rearrangements.
@article{TRSPY_2001_232_a15,
     author = {N. P. Korneichuk},
     title = {Best {Approximation} and {Symmetric} {Decreasing} {Rearrangements} of {Functions}},
     journal = {Informatics and Automation},
     pages = {179--193},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a15/}
}
TY  - JOUR
AU  - N. P. Korneichuk
TI  - Best Approximation and Symmetric Decreasing Rearrangements of Functions
JO  - Informatics and Automation
PY  - 2001
SP  - 179
EP  - 193
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a15/
LA  - ru
ID  - TRSPY_2001_232_a15
ER  - 
%0 Journal Article
%A N. P. Korneichuk
%T Best Approximation and Symmetric Decreasing Rearrangements of Functions
%J Informatics and Automation
%D 2001
%P 179-193
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a15/
%G ru
%F TRSPY_2001_232_a15
N. P. Korneichuk. Best Approximation and Symmetric Decreasing Rearrangements of Functions. Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 179-193. http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a15/