Boundedness and Compactness Criteria for a~Generalized Truncated Potential
Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 164-178
Voir la notice de l'article provenant de la source Math-Net.Ru
Boundedness and compactness criteria are established for a generalized truncated Riesz potential $K_{\alpha} f(x,t) =\int _{|y|\leq 2|x|} (|x-y| +t)^{\alpha -n} f(y)\,dy$, $t\in [0,\infty)$, $x\in \mathbb R^n$, that acts from $L^p (\mathbb R^n)$ to $L_{\nu }^q (\mathbb R_+^{n+1})$, where ${1$, ${0$, ${\alpha >n/p}$, and $\nu$ is a positive Borel measure on $\mathbb R_+^{n+1}$. Also, two-sided estimates for a measure of noncompactness of the operator $K_{\alpha }$ are obtained.
@article{TRSPY_2001_232_a14,
author = {V. M. Kokilashvili},
title = {Boundedness and {Compactness} {Criteria} for {a~Generalized} {Truncated} {Potential}},
journal = {Informatics and Automation},
pages = {164--178},
publisher = {mathdoc},
volume = {232},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a14/}
}
V. M. Kokilashvili. Boundedness and Compactness Criteria for a~Generalized Truncated Potential. Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 164-178. http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a14/