On a~Procedure of Projective Fibering of Functionals on Banach Spaces
Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 156-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

A procedure for explicitly constructing multiple minimization variational problems with additional constraints is substantiated for functionals defined on Banach spaces. This procedure is based on the generalization of Pohozaev's fibering method.
@article{TRSPY_2001_232_a13,
     author = {Ya. Sh. Il'yasov},
     title = {On {a~Procedure} of {Projective} {Fibering} of {Functionals} on {Banach} {Spaces}},
     journal = {Informatics and Automation},
     pages = {156--163},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a13/}
}
TY  - JOUR
AU  - Ya. Sh. Il'yasov
TI  - On a~Procedure of Projective Fibering of Functionals on Banach Spaces
JO  - Informatics and Automation
PY  - 2001
SP  - 156
EP  - 163
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a13/
LA  - ru
ID  - TRSPY_2001_232_a13
ER  - 
%0 Journal Article
%A Ya. Sh. Il'yasov
%T On a~Procedure of Projective Fibering of Functionals on Banach Spaces
%J Informatics and Automation
%D 2001
%P 156-163
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a13/
%G ru
%F TRSPY_2001_232_a13
Ya. Sh. Il'yasov. On a~Procedure of Projective Fibering of Functionals on Banach Spaces. Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 156-163. http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a13/

[1] Struwe M., Variational methods, application to nonlinear partial differential equations and Hamiltonian systems, Springer, Berlin, Heidelberg, New York, 1996, 346 pp. | MR | Zbl

[2] Berestycki H., Capuzzo Dolcetta I., Nirenberg L., “Variational methods for indefinite superlinear homogeneous elliptic problems”, NoDEA, 2:4 (1995), 553–572 | DOI | MR | Zbl

[3] Berestycki H., Lions P.-L., “Nonlinear scalar field equations. I: Existence of ground state”, Arch. Ration. Mech. and Anal., 82 (1983), 313–345 | MR | Zbl

[4] Drabek P., Pohozaev S. I., “Positive solution for the $p$-Laplacian: application of the fibering method”, Proc. Roy. Soc. Edinburgh A., 127 (1997), 703–726 | MR | Zbl

[5] Pokhozhaev S. I., “Ob odnom konstruktivnom metode variatsionnogo ischisleniya”, DAN SSSR, 298:6 (1988), 1330–1333 | MR | Zbl

[6] Pokhozhaev S. I., “O metode rassloeniya reshenii nelineinykh kraevykh zadach”, Tr. MIAH, 192, 1990, 146–163 | MR | Zbl

[7] Pokhozhaev S. I., “Ob odnom podkhode k nelineinym uravneniyam”, DAN SSSR, 247:6 (1979), 1327–1331 | MR | Zbl

[8] Ilyasov Ya. Sh., “Teorema ob otsutstvii polozhitelnykh reshenii dlya polulineinykh ellipticheskikh uravnenii”, Dokl. RAN, 364:1 (1999), 11–13 | MR

[9] Ilyasov Ya. Sh., “Ob odnom neobkhodimom uslovii suschestvovaniya polozhitelnykh reshenii dlya klassa uravnenii s $p$-Laplasom”, Mat. zametki, 66:2 (1999), 312–314 | MR

[10] Burbaki N., Differentsiruemye i analiticheskie mnogoobraziya: Svodka rezultatov, Mir, M., 1975 | MR

[11] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl