Boundary Control of Spherically Symmetric Oscillations of a~Three-Dimensional Ball
Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 144-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of boundary control of radially symmetric oscillations of a 3-ball that are described by a wave equation whose solutions $u(r, t)$ admit the existence of finite energy at every moment of time is studied. The state of an oscillating ball at every fixed moment of time $t$ is characterized by a pair of functions $\{ u (r, t), u_t (r, t) \}$. A minimal time interval $T$ is determined that is sufficient for changing an arbitrary initial state $\{ u (r, 0), u_t (r, 0) \}$ of the oscillation process to an arbitrary preset state $\{ u (r, T), u_t (r, T) \}$ with the use of a boundary control on the ball surface.
@article{TRSPY_2001_232_a12,
     author = {V. A. Il'in},
     title = {Boundary {Control} of {Spherically} {Symmetric} {Oscillations} of {a~Three-Dimensional} {Ball}},
     journal = {Informatics and Automation},
     pages = {144--155},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a12/}
}
TY  - JOUR
AU  - V. A. Il'in
TI  - Boundary Control of Spherically Symmetric Oscillations of a~Three-Dimensional Ball
JO  - Informatics and Automation
PY  - 2001
SP  - 144
EP  - 155
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a12/
LA  - ru
ID  - TRSPY_2001_232_a12
ER  - 
%0 Journal Article
%A V. A. Il'in
%T Boundary Control of Spherically Symmetric Oscillations of a~Three-Dimensional Ball
%J Informatics and Automation
%D 2001
%P 144-155
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a12/
%G ru
%F TRSPY_2001_232_a12
V. A. Il'in. Boundary Control of Spherically Symmetric Oscillations of a~Three-Dimensional Ball. Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 144-155. http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a12/

[1] Ilin V. A., “Granichnoe upravlenie protsessom kolebanii na dvukh kontsakh v terminakh obobschennogo resheniya volnovogo uravneniya s konechnoi energiei”, Dif. uravneniya, 36:11 (2000), 1513–1528 | MR

[2] Ilin V. A., “Granichnoe upravlenie protsessom kolebanii na odnom kontse pri zakreplennom vtorom kontse v terminakh obobschennogo resheniya volnovogo uravneniya s konechnoi energiei”, Dif. uravneniya, 36:12 (2000), 1670–1686 | MR