Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2001_232_a11, author = {M. L. Gol'dman}, title = {Sharp {Estimates} for the {Norms} of {Hardy-Type} {Operators} on the {Cones} of {Quasimonotone} {Functions}}, journal = {Informatics and Automation}, pages = {115--143}, publisher = {mathdoc}, volume = {232}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a11/} }
TY - JOUR AU - M. L. Gol'dman TI - Sharp Estimates for the Norms of Hardy-Type Operators on the Cones of Quasimonotone Functions JO - Informatics and Automation PY - 2001 SP - 115 EP - 143 VL - 232 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a11/ LA - ru ID - TRSPY_2001_232_a11 ER -
M. L. Gol'dman. Sharp Estimates for the Norms of Hardy-Type Operators on the Cones of Quasimonotone Functions. Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 115-143. http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a11/
[1] Arino M., Muckenhoupt B., “Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for non-increasing functions”, Trans. Amer. Math. Soc., 320 (1990), 727–735 | DOI | MR | Zbl
[2] Burenkov V. I., Goldman M. L., “Vychislenie normy polozhitelnogo operatora na konuse monotonnykh funktsii”, Tr. MIAN, 210, 1995, 65–89 | MR | Zbl
[3] Carro M., Soria J., “Weighted Lorentz spaces and the Hardy operator”, J. Func. Anal., 112 (1993), 480–494 | DOI | MR | Zbl
[4] Carro M., Soria J., “The Hardy–Littlewood maximal function and weighted Lorentz spaces”, J. London Math. Soc., 55 (1997), 146–158 | DOI | MR | Zbl
[5] Goldman M. L., “Ob integralnykh neravenstvakh na konuse funktsii so svoistvami monotonnosti”, DAN SSSR, 320:5 (1991), 1037–1042 | MR
[6] Goldman M. L., “O vlozhenii obobschennykh prostranstv Besova i Lorentsa”, Funktsionalnye prostranstva i ikh primenenie k differentsialnym uravneniyam, RUDN, M., 1992, 36–57
[7] Goldman M. L., “On integral inequalities on a set of functions with some properties of monotonicity”, Function spaces, differential operators and nonlinear analysis, Teubner-Texte Math., 133, Leipzig, 1993, 274–279 | MR
[8] Goldman M. L., Hardy type inequalities on the cone of quasimonotone functions, Res. Rep. 98/31, Russ. Acad. Sci. Far-East Branch Comput. Center, Khabarovsk, 1998.
[9] Goldman M. L., “Two-sided estimates for integral operators on the cone”, Spectral and evolution problems, Proc. 10th Crim. Autumn Math. School–Symp, 10, Izd-vo Nats. un-ta Tavridy, Simferopol, 2000, 16–19 | MR
[10] Goldman M. L., Heinig H. P., Stepanov V. D., “On the principle of duality in Lorentz spaces”, Canad. J. Math., 48 (1996), 959–979 | MR
[11] Lai S., “Weighted norm inequalities for general operators on monotone functions”, Trans. Amer. Math. Soc., 340 (1993), 133–165 | DOI | MR
[12] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR
[13] Myasnikov E. A., Persson L. E., Stepanov V. D., “On the best constants in certain integral inequalities for monotone functions”, Acta Sci. Math. Szeged., 59 (1994), 613–624 | MR | Zbl
[14] Neugebauer C. J., “Weighted norm inequalities for averaging operators of monotone functions”, Publ. Mat., 35:2 (1991), 429–447 | MR | Zbl
[15] Sawyer E., “Boundedness of classical operators on classical Lorentz spaces”, Stud. Math., 96 (1990), 145–158 | MR | Zbl
[16] Stepanov V. D., “Ob integralnykh operatorakh na konuse monotonnykh funktsii i o vlozheniyakh prostranstv Lorentsa”, DAN SSSR, 317:6 (1991), 1308–1311 | MR | Zbl
[17] Stepanov V. D., “The weighted Hardy inequality for non-increasing functions”, Trans. Amer. Math. Soc., 338 (1993), 173–186 | DOI | MR | Zbl
[18] Stepanov V. D., “Integral operators on the cone of monotone functions”, J. London Math. Soc., 48 (1993), 465–487 | DOI | MR | Zbl
[19] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR