Sharp Estimates for the Norms of Hardy-Type Operators on the Cones of Quasimonotone Functions
Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 115-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

Order-sharp three-weight estimates are established for the norms of restrictions of generalized Hardy operators onto the cones of functions from Lebesgue spaces that are monotone on a positive half-axis. The necessary and sufficient conditions are obtained for the boundedness of the norms under minimal a priori assumptions about the measures involved in the definitions of Hardy operators and weighted Lebesgue spaces. The uniformity of the estimates with respect to the parameters of the problem is observed.
@article{TRSPY_2001_232_a11,
     author = {M. L. Gol'dman},
     title = {Sharp {Estimates} for the {Norms} of {Hardy-Type} {Operators} on the {Cones} of {Quasimonotone} {Functions}},
     journal = {Informatics and Automation},
     pages = {115--143},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a11/}
}
TY  - JOUR
AU  - M. L. Gol'dman
TI  - Sharp Estimates for the Norms of Hardy-Type Operators on the Cones of Quasimonotone Functions
JO  - Informatics and Automation
PY  - 2001
SP  - 115
EP  - 143
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a11/
LA  - ru
ID  - TRSPY_2001_232_a11
ER  - 
%0 Journal Article
%A M. L. Gol'dman
%T Sharp Estimates for the Norms of Hardy-Type Operators on the Cones of Quasimonotone Functions
%J Informatics and Automation
%D 2001
%P 115-143
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a11/
%G ru
%F TRSPY_2001_232_a11
M. L. Gol'dman. Sharp Estimates for the Norms of Hardy-Type Operators on the Cones of Quasimonotone Functions. Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 115-143. http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a11/

[1] Arino M., Muckenhoupt B., “Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for non-increasing functions”, Trans. Amer. Math. Soc., 320 (1990), 727–735 | DOI | MR | Zbl

[2] Burenkov V. I., Goldman M. L., “Vychislenie normy polozhitelnogo operatora na konuse monotonnykh funktsii”, Tr. MIAN, 210, 1995, 65–89 | MR | Zbl

[3] Carro M., Soria J., “Weighted Lorentz spaces and the Hardy operator”, J. Func. Anal., 112 (1993), 480–494 | DOI | MR | Zbl

[4] Carro M., Soria J., “The Hardy–Littlewood maximal function and weighted Lorentz spaces”, J. London Math. Soc., 55 (1997), 146–158 | DOI | MR | Zbl

[5] Goldman M. L., “Ob integralnykh neravenstvakh na konuse funktsii so svoistvami monotonnosti”, DAN SSSR, 320:5 (1991), 1037–1042 | MR

[6] Goldman M. L., “O vlozhenii obobschennykh prostranstv Besova i Lorentsa”, Funktsionalnye prostranstva i ikh primenenie k differentsialnym uravneniyam, RUDN, M., 1992, 36–57

[7] Goldman M. L., “On integral inequalities on a set of functions with some properties of monotonicity”, Function spaces, differential operators and nonlinear analysis, Teubner-Texte Math., 133, Leipzig, 1993, 274–279 | MR

[8] Goldman M. L., Hardy type inequalities on the cone of quasimonotone functions, Res. Rep. 98/31, Russ. Acad. Sci. Far-East Branch Comput. Center, Khabarovsk, 1998.

[9] Goldman M. L., “Two-sided estimates for integral operators on the cone”, Spectral and evolution problems, Proc. 10th Crim. Autumn Math. School–Symp, 10, Izd-vo Nats. un-ta Tavridy, Simferopol, 2000, 16–19 | MR

[10] Goldman M. L., Heinig H. P., Stepanov V. D., “On the principle of duality in Lorentz spaces”, Canad. J. Math., 48 (1996), 959–979 | MR

[11] Lai S., “Weighted norm inequalities for general operators on monotone functions”, Trans. Amer. Math. Soc., 340 (1993), 133–165 | DOI | MR

[12] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR

[13] Myasnikov E. A., Persson L. E., Stepanov V. D., “On the best constants in certain integral inequalities for monotone functions”, Acta Sci. Math. Szeged., 59 (1994), 613–624 | MR | Zbl

[14] Neugebauer C. J., “Weighted norm inequalities for averaging operators of monotone functions”, Publ. Mat., 35:2 (1991), 429–447 | MR | Zbl

[15] Sawyer E., “Boundedness of classical operators on classical Lorentz spaces”, Stud. Math., 96 (1990), 145–158 | MR | Zbl

[16] Stepanov V. D., “Ob integralnykh operatorakh na konuse monotonnykh funktsii i o vlozheniyakh prostranstv Lorentsa”, DAN SSSR, 317:6 (1991), 1308–1311 | MR | Zbl

[17] Stepanov V. D., “The weighted Hardy inequality for non-increasing functions”, Trans. Amer. Math. Soc., 338 (1993), 173–186 | DOI | MR | Zbl

[18] Stepanov V. D., “Integral operators on the cone of monotone functions”, J. London Math. Soc., 48 (1993), 465–487 | DOI | MR | Zbl

[19] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR