On the Solvability, in the Class of Polynomials, of the Dirichlet Problem for the Laplace Equation on an Arbitrary Polygon
Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 102-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

A constructive algorithm is developed that distinguishes between the cases when the solution to the Dirichlet problem for the Laplace equation is or is not a harmonic polynomial when the boundary values on the sides of an arbitrary polygon are specified by algebraic polynomials.
@article{TRSPY_2001_232_a10,
     author = {E. A. Volkov},
     title = {On the {Solvability,} in the {Class} of {Polynomials,} of the {Dirichlet} {Problem} for the {Laplace} {Equation} on an {Arbitrary} {Polygon}},
     journal = {Informatics and Automation},
     pages = {102--114},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a10/}
}
TY  - JOUR
AU  - E. A. Volkov
TI  - On the Solvability, in the Class of Polynomials, of the Dirichlet Problem for the Laplace Equation on an Arbitrary Polygon
JO  - Informatics and Automation
PY  - 2001
SP  - 102
EP  - 114
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a10/
LA  - ru
ID  - TRSPY_2001_232_a10
ER  - 
%0 Journal Article
%A E. A. Volkov
%T On the Solvability, in the Class of Polynomials, of the Dirichlet Problem for the Laplace Equation on an Arbitrary Polygon
%J Informatics and Automation
%D 2001
%P 102-114
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a10/
%G ru
%F TRSPY_2001_232_a10
E. A. Volkov. On the Solvability, in the Class of Polynomials, of the Dirichlet Problem for the Laplace Equation on an Arbitrary Polygon. Informatics and Automation, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 102-114. http://geodesic.mathdoc.fr/item/TRSPY_2001_232_a10/

[1] Nikolskii S. M., “Sluchai, kogda reshenie kraevoi zadachi — mnogochlen”, Dokl. RAN, 366:6 (1999), 746–748 | MR

[2] Nikolskii S. M., “Kraevaya zadacha dlya mnogochlenov”, Tr. MIAN, 227, 1999, 223–236 | MR

[3] Nikolskii S. M., “Esche o kraevoi zadache s mnogochlenami”, Tr. MIAN, 286–288 | MR

[4] Volkov E. A., “Kriterii razreshimosti kraevykh zadach dlya uravnenii Laplasa i Puassona na spetsialnykh treugolnikakh i pryamougolnike v algebraicheskikh mnogochlenakh”, Tr. MIAN, 227, 1999, 122–136 | MR | Zbl

[5] Fufaev V. V., “K zadache Dirikhle dlya oblastei s uglami”, DAN SSSR, 131:1 (1960), 37–39 | MR | Zbl

[6] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v konicheskikh oblastyakh”, DAN SSSR, 153:1 (1963), 27–29

[7] Volkov E. A., “O differentsialnykh svoistvakh reshenii kraevykh zadach dlya uravneniya Laplasa na mnogougolnikakh”, Tr. MIAN, 77, 1965, 113–142 | Zbl

[8] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach vblizi konicheskikh tochek”, DAN SSSR, 219:3 (1974), 512–515

[9] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987, 688 pp. | MR