An Ergodic Theorem for the Action of a~Free Semigroup
Informatics and Automation, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 119-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

An individual ergodic theorem for the action of a free semigroup is proved under the assumption that the measure is stationary. The proof involves the constructions of the associated stationary Markov process and of the skew shift.
@article{TRSPY_2000_231_a4,
     author = {R. I. Grigorchuk},
     title = {An {Ergodic} {Theorem} for the {Action} of {a~Free} {Semigroup}},
     journal = {Informatics and Automation},
     pages = {119--133},
     publisher = {mathdoc},
     volume = {231},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2000_231_a4/}
}
TY  - JOUR
AU  - R. I. Grigorchuk
TI  - An Ergodic Theorem for the Action of a~Free Semigroup
JO  - Informatics and Automation
PY  - 2000
SP  - 119
EP  - 133
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2000_231_a4/
LA  - ru
ID  - TRSPY_2000_231_a4
ER  - 
%0 Journal Article
%A R. I. Grigorchuk
%T An Ergodic Theorem for the Action of a~Free Semigroup
%J Informatics and Automation
%D 2000
%P 119-133
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2000_231_a4/
%G ru
%F TRSPY_2000_231_a4
R. I. Grigorchuk. An Ergodic Theorem for the Action of a~Free Semigroup. Informatics and Automation, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 119-133. http://geodesic.mathdoc.fr/item/TRSPY_2000_231_a4/

[1] Krengel U., Ergodic theorems, W. de Gruyter, Berlin–New York, 1986 | MR

[2] Tempelman A., Ergodic theorems for groups actions, Kluwer Acad. Publ., Dordrecht, 1992 | MR

[3] Arnold V. I., Krylov A. L., “Ravnomernoe raspredelenie tochek na sfere i nekotorye ergodicheskie svoistva reshenii obyknovennykh differentsialnykh uravnenii na kompleksnoi ploskosti”, DAN SSSR, 4:1 (1962), 1–5

[4] Kazhdan D.A., “Ravnomernoe raspredelenie na ploskosti”, Tr. Mosk. mat. o-va, 14, 1965, 299–305 | Zbl

[5] Grigorchuk R. I., “Individualnaya ergodicheskaya teorema dlya deistvii svobodnykh grupp”, Tez. dokl. XII Shkoly po teorii operatorov v funktsionalnykh prostranstvakh, ch. 1, Tambov, 1987, 57

[6] Grigorchuk R. I., “Ergodicheskie teoremy dlya deistvii svobodnoi gruppy i svobodnoi polugruppy”, Mat. zametki, 65:5 (1999), 779–783 | MR | Zbl

[7] Nevo A., Stein E. M., “A generalization of Birkhoff's pointwise ergodic theorem”, Acta math., 173 (1994), 135–154 | DOI | MR | Zbl

[8] Kakutani S., “Random ergodic theorems and Markoff processes with a stable distribution”, Proc. Second Berkeley Sympos. Math. Stat. and Prob., 1951, 247–261 | MR | Zbl

[9] Khalmosh P. R., Lektsii po ergodicheskoi teorii, Inostr. lit., M., 1959

[10] Bufetov A. I., “Operatornye ergodicheskie teoremy dlya deistvii svobodnykh polugrupp i grupp”, Funkts. analiz i ego pril., 34:4 (2000), 1–17 | MR | Zbl

[11] Oseledets V. I., “Markovskie tsepi, kosye proizvedeniya i ergodicheskie teoremy dlya “obschikh” dinamicheskikh sistem”, Teoriya veroyat. i ee prim., 10:3 (1965), 551–557

[12] Abramov L. M., Rokhlin V. A., “Entropiya kosogo proizvedeniya preobrazovanii s invariantnoi meroi”, Vestn. LGU, 2:7 (1962), 5–13 | MR | Zbl

[13] Ilyashenko Yu. S., Li V., Nelokalnye bifurkatsii, MTsNMO-CheRo, M., 1999 | MR

[14] Gorodetskii A. S., Ilyashenko Yu. S., “Nekotorye novye grubye svoistva invariantnykh mnozhestv i attraktorov dinamicheskikh sistem”, Funkts. analiz i ego pril., 33:2 (1999), 16–30 | MR

[15] Elton J., “An ergodic theorem for iterated maps”, Ergod. Th. and Dyn. Syst., 7 (1987), 481–488 | MR | Zbl

[16] Barnsley M., Fractals everywhere, Acad. Press, N. Y., 1988 | MR | Zbl

[17] Rosenblatt M., Markov processes. Structure and asymptotic behavior, Springer-Verl., Berlin–Heidelberg–New York, 1971 | MR

[18] Kifer Y., Ergodic theory of random transformations, Birkhäuser, Boston–Basel–Stuttgart, 1986 | MR | Zbl

[19] Eilenberg S., Automata, languages, and machines, v. A, Acad. Press, New York–London, 1974 | MR | Zbl

[20] Grigorchuk R. I., Żuk A., The lamplighter group as a group generated by a 2-state automaton and its sprectrum, Preprint FIM ETH-Zürich, 1999, to appear in Geom. dedicata | MR

[21] Grigorchuk R. I., “On the system of defining relations and the Schur multiplier of periodic groups generated by finite automata”, Groups St. Andrews 1997 in Bath, I, London Math. Soc. Lecture Note Ser., 260, Cambridge Univ. Press, Cambridge, 1999, 290–317 | MR | Zbl

[22] Bartholdi L., Grigorchuk R. I., “On the spectrum of Hecke type operators related to some fractal groups”, Din. Sist., Avtom. i Beskon. Gruppy, Tr. Mat. Inst. Steklova, 231, 2000, 5–45 | MR | Zbl

[23] Schmidt K., Cocycles of ergodic transformation groups, McMillan. Comp. India, Delhi, 1977 | MR

[24] Rokhlin V. A., “Izbrannye voprosy metricheskoi teorii dinamicheskikh sistem”, UMN, 4:2 (1949), 57–128 | MR | Zbl

[25] Khalmosh P., Gilbertovo prostranstvo v zadachakh, Mir, M., 1970 | MR