A~Theory of Almost Algebraic Poincar\'e Complexes
Informatics and Automation, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 294-322

Voir la notice de l'article provenant de la source Math-Net.Ru

Theories of almost acyclic chain complexes and of almost algebraic Poincaré complexes are constructed. These theories can be used to obtain signature invariants of combinatorial manifolds with arbitrary finite-dimensional vector bundles.
@article{TRSPY_2000_231_a10,
     author = {A. S. Mishchenko},
     title = {A~Theory of {Almost} {Algebraic} {Poincar\'e} {Complexes}},
     journal = {Informatics and Automation},
     pages = {294--322},
     publisher = {mathdoc},
     volume = {231},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2000_231_a10/}
}
TY  - JOUR
AU  - A. S. Mishchenko
TI  - A~Theory of Almost Algebraic Poincar\'e Complexes
JO  - Informatics and Automation
PY  - 2000
SP  - 294
EP  - 322
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2000_231_a10/
LA  - ru
ID  - TRSPY_2000_231_a10
ER  - 
%0 Journal Article
%A A. S. Mishchenko
%T A~Theory of Almost Algebraic Poincar\'e Complexes
%J Informatics and Automation
%D 2000
%P 294-322
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2000_231_a10/
%G ru
%F TRSPY_2000_231_a10
A. S. Mishchenko. A~Theory of Almost Algebraic Poincar\'e Complexes. Informatics and Automation, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 294-322. http://geodesic.mathdoc.fr/item/TRSPY_2000_231_a10/