Integrable Geodesic Flows on the Suspensions of Toric Automorphisms
Informatics and Automation, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 46-63

Voir la notice de l'article provenant de la source Math-Net.Ru

Integrable geodesic flows are studied on suspensions of toric automorphisms. It is shown that, for linear automorphisms with real spectrum, such flows always exist. Their entropy characteristics are investigated. In particular, in the case of hyperbolic automorphisms, we describe explicitly a closed invariant subset on which the topological entropy of the geodesic flow is positive.
@article{TRSPY_2000_231_a1,
     author = {A. V. Bolsinov and I. A. Taimanov},
     title = {Integrable {Geodesic} {Flows} on the {Suspensions} of {Toric} {Automorphisms}},
     journal = {Informatics and Automation},
     pages = {46--63},
     publisher = {mathdoc},
     volume = {231},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2000_231_a1/}
}
TY  - JOUR
AU  - A. V. Bolsinov
AU  - I. A. Taimanov
TI  - Integrable Geodesic Flows on the Suspensions of Toric Automorphisms
JO  - Informatics and Automation
PY  - 2000
SP  - 46
EP  - 63
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2000_231_a1/
LA  - ru
ID  - TRSPY_2000_231_a1
ER  - 
%0 Journal Article
%A A. V. Bolsinov
%A I. A. Taimanov
%T Integrable Geodesic Flows on the Suspensions of Toric Automorphisms
%J Informatics and Automation
%D 2000
%P 46-63
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2000_231_a1/
%G ru
%F TRSPY_2000_231_a1
A. V. Bolsinov; I. A. Taimanov. Integrable Geodesic Flows on the Suspensions of Toric Automorphisms. Informatics and Automation, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 46-63. http://geodesic.mathdoc.fr/item/TRSPY_2000_231_a1/