A~Bosonization Algorithm for Lattice Computer Simulations in~QCD with Dynamical Fermions
Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 101-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of including the effects of dynamical quark loops in computer Monte Carlo simulations of quantum chromodynamics (QCD). A new alogorithm, previously proposed by one of the present authors, for performing the numerical calculations in models with fermions is investigated by the test runs in SU(2) QCD with two flavours of degenerate Wilson quarks.
@article{TRSPY_2000_228_a8,
     author = {T. D. Bakeyev and A. A. Slavnov},
     title = {A~Bosonization {Algorithm} for {Lattice} {Computer} {Simulations} {in~QCD} with {Dynamical} {Fermions}},
     journal = {Informatics and Automation},
     pages = {101--115},
     publisher = {mathdoc},
     volume = {228},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a8/}
}
TY  - JOUR
AU  - T. D. Bakeyev
AU  - A. A. Slavnov
TI  - A~Bosonization Algorithm for Lattice Computer Simulations in~QCD with Dynamical Fermions
JO  - Informatics and Automation
PY  - 2000
SP  - 101
EP  - 115
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a8/
LA  - ru
ID  - TRSPY_2000_228_a8
ER  - 
%0 Journal Article
%A T. D. Bakeyev
%A A. A. Slavnov
%T A~Bosonization Algorithm for Lattice Computer Simulations in~QCD with Dynamical Fermions
%J Informatics and Automation
%D 2000
%P 101-115
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a8/
%G ru
%F TRSPY_2000_228_a8
T. D. Bakeyev; A. A. Slavnov. A~Bosonization Algorithm for Lattice Computer Simulations in~QCD with Dynamical Fermions. Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 101-115. http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a8/

[1] Wilson K. G., “Confinement of quarks”, Phys. Rev. D, 10 (1974), 2445–2459 | DOI

[2] Creutz M., Jacobs L., Rebbi C., “Experiments with a gauge-invariant Ising system”, Phys. Rev. Lett., 42 (1979), 1390–1393 | DOI

[3] Creutz M., Jacobs L., Rebbi C., “Monte Carlo study of Abelian lattice gauge theories”, Phys. Rev. D, 20 (1979), 1915–1922 | DOI

[4] Adler S. L., “Over-relaxation method for the Monte Carlo evaluation of the partition function for multiquadratic actions”, Phys. Rev. D, 23 (1981), 2901–2904 | DOI

[5] Hamber H., Parisi G., “Numerical estimates of hadronic masses in a pure $\operatorname{SU}(3)$ gauge theory”, Phys. Rev. Lett., 47 (1981), 1792–1795 | DOI

[6] Weingarten D. H., Petcher D. N., “Monte Carlo integration for lattice gauge theories with fermions”, Phys. Lett. B, 99:4 (1981), 333–338 | DOI | MR

[7] Brown F. R., Woch T. J., “Overrelaxed heat-bath and metropolis algorithms for accelerating pure gauge Monte Carlo calculations”, Phys. Rev. Lett., 58 (1987), 2394–2396 | DOI

[8] Creutz M., “Overrelaxation and Monte Carlo simulation”, Phys. Rev. D, 36 (1987), 515–519 | DOI | MR

[9] Gupta R., Kilcup G. W., Patel A., Sharpe S. R., de Forcrand Ph., “Comparison of update algorithms for pure gauge $\operatorname{SU}(3)$”, Mod. Phys. Lett. A, 3 (1988), 1367–1378 | DOI | MR

[10] Duane S., Kennedy A. D., Pendelton B. J., Roweth D., “Hybrid Monte Carlo”, Phys. Lett. B, 195 (1987), 216–222 | DOI

[11] Madras N., Socal A. D., “The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walks”, J. Stat. Phys., 50 (1988), 109–186 | DOI | MR | Zbl

[12] Lüscher M., “A new approach to the problem of dynamical quarks in numerical simulations of lattice QCD”, Nucl. Phys. B, 418 (1994), 637–648 | DOI

[13] Lüscher M., “A portable high-quality random number generator for lattice field theory simulations”, Comp. Phys. Comm., 79 (1994), 100–110 | DOI | MR | Zbl

[14] Jegerlehner B., “Study of a new simulation algorithm for dynamical quarks on the APE-100 parallel computer”, Nucl. Phys. B. Proc. Suppl., 42 (1995), 879–881 ; Lattice 94 arXiv: hep-lat/9411065 | DOI

[15] Bunk B., Jansen K., Jegerlehner B., Lüscher M., Simma H., Sommer R., “A new simulation algorithm for lattice QCD with dynamical quarks”, Nucl. Phys. B. Proc. Suppl., 42 (1995), 49–55 ; Lattice 94 | DOI

[16] Peardon M., “Dynamical fermion simulation using Lüscher's local bosonic action algorithm”, Nucl. Phys. B. Proc. Suppl., 42 (1995), 891–893 ; Lattice 94 | DOI

[17] Boriçi A., de Forcrand Ph., “Systematic errors of Lüscher's fermion method and its extensions”, Nucl. Phys. B, 454 (1995), 645–660 | DOI

[18] Alexandrou C., Borrelli A., de Forcrand Ph., Galli A., Jegerlehner F., “Full QCD with the Lüscher local bosonic action”, Nucl. Phys. B, 456 (1995), 296–312 | DOI

[19] Jegerlehner B., “Improvements of Lüscher's local bosonic fermion algorithm”, Nucl. Phys. B, 465 (1996), 487–504 ; arXiv: hep-lat/9512001 | DOI

[20] Jansen K., Liu C., Jegerlehner B., “Performance tests of the Kramers equation and boson algorithm for simulations of QCD”, Phys. Lett. B, 375 (1996), 255–261 | DOI

[21] DeGrand T., Lectures presented at 1996 SLAC Summer Institute, arXiv: hep-ph/9610132

[22] Slavnov A. A., “Bosonization of fermion determinants”, Phys. Lett. B, 366 (1996), 253–260 ; arXiv: hep-th/9507152 | DOI | MR

[23] Slavnov A. A., “Fermi–Bose duality via extra dimension”, Phys. Lett. B, 388 (1996), 147–153 ; arXiv: hep-th/9512101 | DOI | MR

[24] Slavnov A. A., “Bosonized formulation of lattice QCD”, Relativistic nuclear physics and QCD (Dubna, Sept. 1996), talk presented at XVIII International Seminar | MR

[25] Jansen K., “Recent developments in fermion simulation algorithms”, Nucl. Phys. B. Proc. Suppl., 53 (1997), 127–133 ; arXiv: hep-th/9607051 | DOI

[26] Bakeev T. D., Veselov A. I., Polikarpov M. I., Slavnov A. A., “Chislennyi analiz novogo algoritma bozonizatsii na primere prostoi odnomernoi modeli”, TMF, 113 (1997), 58–67 ; arXiv: hep-lat/9702002 | Zbl

[27] de Forcrand Ph., Fermionic Monte Carlo algorithms for lattice QCD, preprint, 1997; arXiv: hep-lat/9702009

[28] Foster M., Michael C., “(UKQCD Collab.) Quark mass dependence of hadron masses from lattice QCD”, Phys. Rev. D, 59:074503 (1999) | MR

[29] Bernard C., DeTar C., Gottlieb S. et al., “(MILC Collab.) Light hadron spectrum with Kogut–Susskind quarks”, Nucl. Phys. B. Proc. Suppl., 73 (1999), 198–200 | DOI

[30] Aoki S., Boyd G., Burkhalter R. et al., “(CP-PACS Collab.) CP-PACS results for the quenched light hadron spectrum”, Nucl. Phys. B. Proc. Suppl., 63 (1998), 161–163 | DOI

[31] Bali G. S., “Overview from lattice QCD”, Fizika B, 8 (1999); arXiv: hep-lat/9901023

[32] de Forcrand Ph., The multiboson method, preprint, 1999 ; \end {thebibliography} arXiv: hep-lat/9903035 | MR