Generalized Functions for Quantum Fields Obeying Quadratic Exchange Relations
Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 90-100
Voir la notice de l'article provenant de la source Math-Net.Ru
The axiomatic formulation of quantum field theory (QFT) of the 1950's in terms of fields defined as operator valued Schwartz distributions is re-examined in the light of subsequent developments. These include, on the physical side, the construction of a wealth of (2-dimensional) soluble QFT models with quadratic exchange relations, and, on the mathematical side, the introduction of the Colombeau algebras of generalized functions. Exploiting the fact that energy positivity gives rise to a natural regularization of Wightman distributions as analytic functions in a tube domain, we argue that the flexible notions of Colombeau theory which can exploit particular regularizations is better suited (than Schwartz distributions) for a mathematical formulation of QFT.
@article{TRSPY_2000_228_a7,
author = {H. Grosse and M. Oberguggenberger and I. T. Todorov},
title = {Generalized {Functions} for {Quantum} {Fields} {Obeying} {Quadratic} {Exchange} {Relations}},
journal = {Informatics and Automation},
pages = {90--100},
publisher = {mathdoc},
volume = {228},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a7/}
}
TY - JOUR AU - H. Grosse AU - M. Oberguggenberger AU - I. T. Todorov TI - Generalized Functions for Quantum Fields Obeying Quadratic Exchange Relations JO - Informatics and Automation PY - 2000 SP - 90 EP - 100 VL - 228 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a7/ LA - en ID - TRSPY_2000_228_a7 ER -
H. Grosse; M. Oberguggenberger; I. T. Todorov. Generalized Functions for Quantum Fields Obeying Quadratic Exchange Relations. Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 90-100. http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a7/