Adelic Formulas for Gamma and Beta Functions of One-Class Quadratic Fields: Applications to 4-Particle Scattering String Amplitudes
Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 76-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

Regularized adelic formulas for gamma and beta functions for arbitrary quasicharacters (either ramified or not) and in an arbitrary field of algebraic numbers are concretized as applied to one-class quadratic fields (and to the field of rational numbers). Applications to 4-tachyon tree string amplitudes, to the Veneziano (open strings) and Virasoro (closed strings) amplitudes as well as to massless 4-particle amplitudes of the Ramond–Neveu–Schwarz superstring and a heterotic string are discussed. Certain relations between different superstring amplitudes are established.
@article{TRSPY_2000_228_a6,
     author = {V. S. Vladimirov},
     title = {Adelic {Formulas} for {Gamma} and {Beta} {Functions} of {One-Class} {Quadratic} {Fields:} {Applications} to {4-Particle} {Scattering} {String} {Amplitudes}},
     journal = {Informatics and Automation},
     pages = {76--89},
     publisher = {mathdoc},
     volume = {228},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a6/}
}
TY  - JOUR
AU  - V. S. Vladimirov
TI  - Adelic Formulas for Gamma and Beta Functions of One-Class Quadratic Fields: Applications to 4-Particle Scattering String Amplitudes
JO  - Informatics and Automation
PY  - 2000
SP  - 76
EP  - 89
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a6/
LA  - ru
ID  - TRSPY_2000_228_a6
ER  - 
%0 Journal Article
%A V. S. Vladimirov
%T Adelic Formulas for Gamma and Beta Functions of One-Class Quadratic Fields: Applications to 4-Particle Scattering String Amplitudes
%J Informatics and Automation
%D 2000
%P 76-89
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a6/
%G ru
%F TRSPY_2000_228_a6
V. S. Vladimirov. Adelic Formulas for Gamma and Beta Functions of One-Class Quadratic Fields: Applications to 4-Particle Scattering String Amplitudes. Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 76-89. http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a6/

[1] Bogolyubov N. N., Izbrannye trudy, t. 1–3, Nauk. dumka, Kiev, 1969–1971 | MR

[2] Bogolubov N. N., Selected works, In 4 pts., Gordon and Breach, New York–London, 1990–1995 | MR | Zbl

[3] Hensel K., “Über eine neue Begründung der Theorie der algebraischen Zahlen”, Jahresber. Dtsch. Math.-Ver., 6:1 (1897), 83–88

[4] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl

[5] Schikhof W. H., Ultrametric calculus. An introduction to $p$-adic analysis, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[6] Koblits N., $p$-Adicheskie chisla, $p$-adicheskii analiz i dzeta-funktsiya, Mir, M., 1982 | MR

[7] Veil A., Osnovy teorii chisel, Mir, M., 1972 | MR

[8] Gelfand I. M., Graev M. M., Pyatetskii-Shapiro I. I., Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR

[9] Vladimirov V. C., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[10] Khrennikov A., $p$-Adic valued distributions in mathematical physics, Kluver, Dordrecht, 1994 | MR | Zbl

[11] Brekke L., Freund P. G. O., “$p$-Adic numbers in physics”, Phys. Repts. Rev. Sect. Phys. Lett., 233:1 (1993), 1–66 | MR

[12] Freund P. G. O., Witten E., “Adelic string amplitudes”, Phys. Lett. B, 199:2 (1987), 191–194 | DOI | MR

[13] Volovich I. V., “Harmonic analysis and $p$-adic strings”, Lett. Math. Phys., 16 (1988), 61–67 | DOI | MR | Zbl

[14] Vladimirov V. S., Sapuzhak T. M., “Adelic formulas for string amplitudes in fields of algebraic numbers”, Lett. Math. Phys., 37 (1996), 233–242 | DOI | MR | Zbl

[15] Vladimirov V. S., “Adelnye formuly dlya gamma- i beta-funktsii popolnenii polei algebraicheskikh chisel i ikh primeneniya k strunnym amplitudam”, Izv. RAN. Ser. mat., 60:1 (1996), 63–86 | MR | Zbl

[16] Vladimirov V. C., “Adelnye formuly dlya gamma- i beta-funktsii v polyakh algebraicheskikh chisel”, Dokl. RAN, 347:1 (1996), 11–15 | MR | Zbl

[17] Vladimirov V. S., “Adelic formulas for gamma- and beta-functions in algebraic number fields”, $p$-Adic functional analysis, Lect. Notes Pure and Appl. Math., 192, M. Dekker, N. Y., 1997, 383–395 | MR | Zbl

[18] Vladimirov V. S., “O razvetvlennykh kharakterakh gruppy idelei odnoklassnykh kvadratichnykh polei”, Tr. MIAN, 224, 1999, 122–129 | MR | Zbl

[19] Vladimirov V. S., “Adelnye formuly Frëinda–Vittena dlya amplitud Venetsiano i Virasoro–Shapiro”, UMN, 48:6 (1993), 3–38 | MR | Zbl

[20] Vladimirov V. S., “On the Freund–Witten adelic formula for Veneziano amplitudes”, Lett. Math. Phys., 27 (1993), 123–131 | DOI | MR | Zbl

[21] Grin M., Shvarts Dzh., Vitten E., Teoriya superstrun, 1,2, Mir, M., 1990

[22] Freund P. G. O., Olson N., “Non-Archimedean strings”, Phys. Lett. B, 199:2 (1987), 186–190 | DOI | MR

[23] Frampton P. H., Nishino H., “Theory of $p$-adic closed strings”, Phys. Rev. Lett., 62:17 (1989), 1960–1963 | DOI | MR

[24] Frampton P. H., Okada Y., “$p$-Adic string $N$-point function”, Phys. Rev. Lett., 60:6 (1988), 484–486 | DOI | MR

[25] Aref'eva I. Ya., Dragovic B. G., Volovich I.V., “Open and closed $p$-adic strings and quadratic extentions of number fields”, Phys. Lett. B, 212:3 (1988), 283–291 | DOI | MR

[26] Ruelle Ph., Thiran E., Verstegen D., Weyers J., “Adelic string and superstring amplitudes”, Mod. Phys. Lett. A, 4:18 (1989), 1745–1752 | DOI | MR