On the Cohomologies of the Heisenberg Algebras
Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 61-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the cohomologies of the Heisenberg algebras as one-dimensional central extensions of commutative Lie algebras generated by nondegenerate 2-cocycles. Section 1 contains a general description of the cohomologies of one-dimensional central extensions of Lie algebras and typical examples. In Section 2, the general description is applied to explicitly evaluate the cohomologies of the Heisenberg algebra in important cases. Appendix describes the main properties of linear operations related to the generating 2-cocycle that are useful in particular calculations.
@article{TRSPY_2000_228_a5,
     author = {V. V. Zharinov},
     title = {On the {Cohomologies} of the {Heisenberg} {Algebras}},
     journal = {Informatics and Automation},
     pages = {61--75},
     publisher = {mathdoc},
     volume = {228},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a5/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - On the Cohomologies of the Heisenberg Algebras
JO  - Informatics and Automation
PY  - 2000
SP  - 61
EP  - 75
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a5/
LA  - ru
ID  - TRSPY_2000_228_a5
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T On the Cohomologies of the Heisenberg Algebras
%J Informatics and Automation
%D 2000
%P 61-75
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a5/
%G ru
%F TRSPY_2000_228_a5
V. V. Zharinov. On the Cohomologies of the Heisenberg Algebras. Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 61-75. http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a5/

[1] Dirac P. A. M., The principles of quantum mechanics, Clarendon press, New York–Oxford, 1958 ; Dirak P. A .M., Printsipy kvantovoi mekhaniki, Fizmatgiz, M., 1960 | MR | Zbl

[2] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976 | MR

[3] Mackey G. W., The mathematical foundations of quantum mechanics, W. A. Benjamin, Inc., N. Y., 1963 ; Makki Dzh., Lektsii po matematicheskim osnovam kvantovoi mekhaniki, Mir, M., 1965 | Zbl | MR

[4] Segal I. E., Mathematical problems of relativistic physics, Amer. Math. Soc., Providence, R.I., 1963 ; Sigal I., Matematicheskie problemy relyativistskoi fiziki, Mir, M., 1968 | MR | MR

[5] Dixmier J., Algèbres enveloppantes, Gauthier-Villares, Paris, 1974 ; Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR | Zbl | MR

[6] Théorie des algébres de Lie. Topologie des groupes de Lie, Séminaire “Sophus Lie” (1954–1955), Ecole Norm. Supér., Paris, 1955; Teoriya algebr Li. Topologiya grupp Li, Seminar “Sofus Li”, Izd-vo inostr. lit., M., 1962

[7] Fuks D. B., Kogomologii beskonechnomernykh algebr Li, Nauka, M., 1984 | MR

[8] Feigin B. L., Fuks D. B., “Kogomologii grupp i algebr Li”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 21, VINITI, M., 1988, 121–209 | MR

[9] Weyl H., The classical groups, their invariants and representations, Princeton Univ. Press, Princeton, N.J., 1939 ; Veil G., Klassicheskie gruppy, ikh invarianty i predstavleniya, Izd-vo inostr. lit., M., 1947 | MR

[10] Bourbaki N., Groupes et algébres de Lie, Hermann, Paris, 1971–1975; Burbaki N., Gruppy i algebry Li, Mir, M., 1976–1978 | MR