Wiener-Type Tauberian Theorems for Generalized Functions on the Half-Axis
Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 52-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

Wiener-type Tauberian theorems for the generalized multiplicative convolution are formulated, and their certain applications to differential equations and integral transforms are demonstrated.
@article{TRSPY_2000_228_a4,
     author = {Yu. N. Drozhzhinov and B. I. Zavialov},
     title = {Wiener-Type {Tauberian} {Theorems} for {Generalized} {Functions} on the {Half-Axis}},
     journal = {Informatics and Automation},
     pages = {52--60},
     publisher = {mathdoc},
     volume = {228},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a4/}
}
TY  - JOUR
AU  - Yu. N. Drozhzhinov
AU  - B. I. Zavialov
TI  - Wiener-Type Tauberian Theorems for Generalized Functions on the Half-Axis
JO  - Informatics and Automation
PY  - 2000
SP  - 52
EP  - 60
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a4/
LA  - ru
ID  - TRSPY_2000_228_a4
ER  - 
%0 Journal Article
%A Yu. N. Drozhzhinov
%A B. I. Zavialov
%T Wiener-Type Tauberian Theorems for Generalized Functions on the Half-Axis
%J Informatics and Automation
%D 2000
%P 52-60
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a4/
%G ru
%F TRSPY_2000_228_a4
Yu. N. Drozhzhinov; B. I. Zavialov. Wiener-Type Tauberian Theorems for Generalized Functions on the Half-Axis. Informatics and Automation, Problems of the modern mathematical physics, Tome 228 (2000), pp. 52-60. http://geodesic.mathdoc.fr/item/TRSPY_2000_228_a4/

[1] Bogolyubov N. N., Vladimirov V. S., Tavkhelidze A. N., “Ob avtomodelnoi asimptotike v kvantovoi teorii polya. II”, TMF, 12:3 (1972), 305–330 | MR

[2] Vladimirov V. S., “Mnogomernoe obobschenie tauberovoi teoremy Khardi–Litlvuda”, Izv. AN SSSR. Ser. mat., 40 (1976), 1084–1101 | MR | Zbl

[3] Zavyalov B. I., “Avtomodelnaya asimptotika elektromagnitnykh formfaktorov i povedenie ikh fure-obrazov v okrestnosti svetovogo konusa”, TMF, 17:2 (1973), 178–188

[4] Zavyalov B. I., “Kvaziasimptotika obobschennykh funktsii i avtomodelnost elektromagnitnykh formfaktorov”, TMF, 19:2 (1974), 163–171

[5] Vladimirov V. S., Zavyalov B. I., “Tauberovy teoremy v kvantovoi teorii polya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 15, VINITI, M., 1980, 95–130 | MR

[6] Vladimirov V. S., Zavyalov B. I., “Avtomodelnaya asimptotika prichinnykh funktsii i ikh povedenie na svetovom konuse”, TMF, 50:2 (1982), 163–194 | MR

[7] Vladimirov V. S., Drozhzhinov Yu. N., Zavyalov B. I., Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986 | MR

[8] Drozhzhinov Yu. N., Zavyalov B. I., “Tauberova teorema tipa Vinera dlya obobschennykh funktsii medlennogo rosta”, Mat. sb., 189:7 (1998), 91–130 | MR | Zbl

[9] Drozhzhinov Yu. N., Zavyalov B. I., “Teoremy tipa Vinera dlya obobschennykh funktsii i integralnoe preobrazovanie Stiltesa”, Dokl. RAN, 363:2 (1998), 156–159 | MR | Zbl

[10] Wiener N., “Tauberian theorems”, J. Ann. Math., 33:1 (1932), 1–100 | DOI | MR

[11] Khardi G., Raskhodyaschiesya ryady, Izd-vo inostr. lit., M., 1951

[12] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, vyp. 1, Fizmatgiz, M., 1959

[13] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl